Кислород окисляет. Химические свойства кислорода. Оксиды — Гипермаркет знаний. Применение в мед и фарм

Кислород (О) стоит в 1 периоде, VI группе, в главной подгруппе. р-элемент. Электронная конфигурация 1s2 2s22p4 . Число электронов на внешнем уровне – 6. Кислород может принять 2 электрона и в редких случаях отдать. Валентность кислорода 2, степень окисления -2.

Физические свойства: кислород ( О2) – бесцветный газ, без запаха и вкуса; в воде малорастворим, немного тяжелее воздуха. При -183 °C и 101,325 Па кислород сжижается, приобретая голубоватый цвет. Строение молекулы: молекула кислорода двухатомна, в обычных условиях прочная, обладает магнитными свойствами. Связь в молекуле ковалентная неполярная. Кислород имеет аллотропную модификацию – озон (О3) – более сильный окислитель, чем кислород.

Химические свойства: до завершения энергетического уровня кислороду нужно 2 электрона, которые он принимает проявляя степень окисления -2, но в соединении со фтором кислород ОF2 -2 и О2F2 -1. Благодаря химической активности кислород взаимодействует почти со всеми простыми веществами. С металлами образует оксиды и пероксиды:

Кислород не реагирует только с платиной. При повышенных и высоких температурах реагирует со многими неметаллами:

Непосредственно кислород не взаимодействует с галогенами. Кислород реагирует со многими сложными веществами:

Кислороду характерны реакции горения:

В кислороде горят многие органические вещества:

При окислении кислородом уксусного альдегида получают уксусную кислоту:

Получение: в лаборатории: 1) электролизом водного раствора щелочи: при этом на катоде выделяется водород, а на аноде – кислород; 2) разложением бертолетовой соли при нагревании: 2КСlО3?2КСl + 3О2?; 3) очень чистый кислород получают: 2КМnO4?К2МnO4 + МnО2 + О2?.

Нахождение в природе: кислород составляет 47,2 % массы земной коры. В свободном состоянии он содержится в атмосферном воздухе – 21 %. Входит в состав многих природных минералов, огромное его количество содержится в организмах растений и животных. Природный кислород состоит из 3 изотопов: О(16), О(17), О(18).

Применение: используется в химической, металлургической промышленности, в медицине.

24. Озон и его свойства

В твердом состоянии у кислорода зафиксировано три модификации: ?-, ?– и?– модификации. Озон ( О3) – одна из аллотропных модификаций кислорода. Строение молекулы: озон имеет нелинейное строение молекулы с углом между атомами 117°. Молекула озона обладает некоторой полярностью (несмотря на атомы одного рода, образующих молекулу озона), диамагнитна, так как не имеет неспаренных электронов.

Физические свойства: озон – синий газ, имеющий характерный запах; молекулярная масса = 48, температура плавления (твердого) = 192,7 °C, температура кипения = 111,9 °C. Жидкий и твердый озон взрывчат, токсичен, хорошо растворим в воде: при 0 °C в 100 объемах воды растворяется до 49 объемов озона.

Химические свойства: озон – сильный окислитель, он окисляет все металлы, в том числе золото – Au и платину – Pt (и металлы платиновой группы). Озон воздействует на блестящую серебряную пластинку, которая мгновенно покрывается черным пероксидом серебра – Аg2О2; бумага, смоченная скипидаром, воспламеняется, сернистые соединения металлов окисляются до солей серной кислоты; многие красящие вещества обесцвечиваются; разрушает органические вещества – при этом молекула озона отщепляет один атом кислорода, и озон превращается в обыкновенный кислород. Атакже большинство неметаллов, переводит низшие оксиды в высшие, а сульфиды их металлов – в их сульфаты:

Йодид калия озон окисляет до молекулярного йода:

Но с пероксидом водорода Н2О2 озон выступает в качестве восстановителя:

В химическом отношении молекулы озона неустойчивы – озон способен самопроизвольно распадаться на молекулярный кислород:

Получение: получают озон в озонаторах путем пропускания через кислород или воздух электрические искры. Образование озона из кислорода:

Озон может образовываться при окислении влажного фосфора, смолистых веществ. Определитель озона: чтобы опознать в воздухе наличие озона, необходимо в воздух погрузить бумажку, пропитанную раствором йодида калия и крахмальным клейстером – если бумажка приобрела синюю окраску, значит, в воздухе присутствует озон. Нахождение в природе: в атмосфере озон образуется во время электрических разрядов. Применение: будучи сильным окислителем озон уничтожает различного рода бактерии, поэтому широко применяется в целях очищения воды и дезинфекции воздуха, используется как белящее средство.

КИСЛОРОД , O (oxygenium ), химический элемент VIA подгруппы периодической системы элементов: O, S, Se, Te, Po – член семейства халькогенов. Это наиболее распространенный в природе элемент, его содержание составляет в атмосфере Земли 21% (об.), в земной коре в виде соединений ок. 50% (масс.) и в гидросфере 88,8% (масс.). Кислород необходим для существования жизни на земле: животные и растения потребляют кислород в процессе дыхания, а растения выделяют кислород в процессе фотосинтеза. Живая материя содержит связанный кислород не только в составе жидкостей организма (в клетках крови и др.), но и в составе углеводов (сахар, целлюлоза, крахмал, гликоген), жиров и белков. Глины, горные породы состоят из силикатов и других кислородсодержащих неорганических соединений, таких, как оксиды, гидроксиды, карбонаты, сульфаты и нитраты. Историческая справка. Первые сведения о кислороде стали известны в Европе из китайских рукописей 8 в. В начале 16 в. Леонардо да Винчи опубликовал данные, связанные с химией кислорода, не зная еще, что кислород – элемент. Реакции присоединения кислорода описаны в научных трудах С.Гейлса (1731) и П.Байена (1774). Заслуживают особого внимания исследования К.Шееле в 1771–1773 взаимодействия металлов и фосфора с кислородом. Дж.Пристли сообщил об открытии кислорода как элемента в 1774, спустя несколько месяцев после сообщения Байена о реакциях с воздухом. Название oxygenium («кислород») дано этому элементу вскоре после его открытия Пристли и происходит от греческих слов, обозначающих «рождающий кислоту»; это связано с ошибочным представлением о том, что кислород присутствует во всех кислотах. Объяснение роли кислорода в процессах дыхания и горения, однако, принадлежит А.Лавуазье (1777). Строение атома. Любой природный атом кислорода содержит 8 протонов в ядре, но число нейтронов может быть равно 8, 9 или 10. Наиболее распространенный из трех изотопов кислорода (99,76%) – это 16 8 O (8 протонов и 8 нейтронов). Содержание другого изотопа, 18 8 O (8 протонов и 10 нейтронов), составляет всего 0,2%. Этот изотоп используется как метка или для идентификации некоторых молекул, а также для проведения биохимических и медико-химических исследований (метод изучения нерадиоактивных следов). Третий нерадиоактивный изотоп кислорода 17 8 O (0,04%) содержит 9 нейтронов и имеет массовое число 17. После того как в 1961 масса изотопа углерода 12 6 C была принята Международной комиссией за стандартную атомную массу, средневзвешенная атомная масса кислорода стала равна 15,9994. До 1961 стандартной единицей атомной массы химики считали атомную массу кислорода, принятую для смеси трех природных изотопов кислорода равной 16,000. Физики за стандартную единицу атомной массы принимали массовое число изотопа кислорода 16 8 O , поэтому по физической шкале средняя атомная масса кислорода составляла 16,0044 (см. также АТОМНАЯ МАССА) .

В атоме кислорода 8 электронов, при этом 2 электрона находятся на внутреннем уровне, а 6 электронов

– на внешнем. Поэтому в химических реакциях кислород может принимать от доноров до двух электронов, достраивая свою внешнюю оболочку до 8 электронов и образуя избыточный отрицательный заряд (см. также АТОМА СТРОЕНИЕ) . Молекулярный кислород. Как большинство других элементов, у атомов которых для достройки внешней оболочки из 8 электронов не хватает 1–2 электронов, кислород образует двухатомную молекулу. В этом процессе выделяется много энергии (~ 490 кДж/моль) и соответственно столько же энергии необходимо затратить для обратного процесса диссоциации молекулы на атомы. Прочность связи O–O настолько высока, что при 2300 ° С только 1% молекул кислорода диссоциирует на атомы. (Примечательно, что при образовании молекулы азота N 2 прочность связи N–N еще выше, ~ 710 кДж/моль.) Электронная структура. В электронной структуре молекулы кислорода не реализуется, как можно было ожидать, распределение электронов октетом вокруг каждого атома, а имеются неспаренные электроны, и кислород проявляет свойства, типичные для такого строения (например, взаимодействует с магнитным полем, являясь парамагнетиком). Реакции. В соответствующих условиях молекулярный кислород реагирует практически с любым элементом, кроме благородных газов. Однако при комнатных условиях только наиболее активные элементы реагируют с кислородом достаточно быстро. Вероятно, большинство реакций протекает только после диссоциации кислорода на атомы, а диссоциация происходит лишь при очень высоких температурах. Однако катализаторы или другие вещества в реагирующей системе могут способствовать диссоциации O 2 . Известно, что щелочные (Li, Na, K) и щелочноземельные (Ca, Sr, Ba) металлы реагируют с молекулярным кислородом с образованием пероксидов: Получение и применение. Благодаря наличию свободного кислорода в атмосфере наиболее эффективным методом его извлечения является сжижение воздуха, из которого удаляют примеси, CO 2 , пыль и т.д. химическими и физическими методами. Циклический процесс включает сжатие, охлаждение и расширение, что и приводит к сжижению воздуха. При медленном подъеме температуры (метод фракционной дистилляции) из жидкого воздуха испаряются сначала благородные газы (наиболее трудно сжижаемые), затем азот и остается жидкий кислород. В результате жидкий кислород содержит следы благородных газов и относительно большой процент азота. Для многих областей применения эти примеси не мешают. Однако для получения кислорода особой чистоты процесс дистилляции необходимо повторять (см. также ВОЗДУХ) . Кислород хранят в танках и баллонах. Он используется в больших количествах как окислитель керосина и других горючих в ракетах и космических аппаратах. Сталелитейная промышленность потребляет газообразный кислород для продувки через расплав чугуна по методу Бессемера для быстрого и эффективного удаления примесей C, S и P. Сталь при кислородном дутье получается быстрее и качественнее, чем при воздушном. Кислород используется также для сварки и резки металлов (кислородно-ацетиленовое пламя). Применяют кислород и в медицине, например, для обогащения дыхательной среды пациентов с затрудненном дыханием. Кислород можно получать различными химическими методами, и некоторые из них применяют для получения малых количеств чистого кислорода в лабораторной практике. Электролиз. Один из методов получения кислорода – электролиз воды, содержащей небольшие добавки NaOH или H 2 SO 4 в качестве катализатора: 2H 2 O ® 2H 2 + O 2 . При этом образуются небольшие примеси водорода. С помощью разрядного устройства следы водорода в газовой смеси вновь превращают в воду, пары которой удаляют вымораживанием или адсорбцией. Термическая диссоциация. Важный лабораторный метод получения кислорода, предложенный Дж.Пристли, заключается в термическом разложении оксидов тяжелых металлов: 2HgO ® 2Hg + O 2 . Пристли для этого фокусировал солнечные лучи на порошок оксида ртути. Известным лабораторным методом является также термическая диссоциация оксосолей, например хлората калия в присутствии катализатора – диоксида марганца: Диоксид марганца, добавляемый в небольших количествах перед прокаливанием, позволяет поддерживать требуемую температуру и скорость диссоциации, причем сам MnO 2 в процессе не изменяется.

Используются также способы термического разложения нитратов:

а также пероксидов некоторых активных металлов, например: 2BaO 2 ® 2BaO + O 2 Последний способ одно время широко использовался для извлечения кислорода из атмосферы и заключался в нагревании BaO на воздухе до образования BaO 2 с последующим термическим разложением пероксида. Способ термического разложения сохраняет свое значение для получения пероксида водорода.

НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА КИСЛОРОДА

Атомный номер 8
Атомная масса 15,9994
Температура плавления, °С –218,4
Температура кипения, °С –183,0
Плотность
твердый, г/см 3 (при t пл ) 1,27
жидкий г/см 3 (при t кип ) 1,14
газообразный, г/дм 3 (при 0° С) 1,429
относительная по воздуху 1,105
критическая а, г/см 3 0,430
Критическая температура а , °С –118,8
Критическое давление а, атм 49,7
Растворимость, см 3 /100 мл растворителя
в воде (0° С) 4,89
в воде (100° С) 1,7
в спирте (25° С) 2,78
Радиус, Å 0,74
ковалентный 0,66
ионный (О 2–) 1,40
Потенциал ионизации, В
первый 13,614
второй 35,146
Электроотрицательность (F = 4) 3,5
а Температура и давление, при которых плотность газа и жидкости одинаковы.
Физические свойства. Кислород при нормальных условиях – бесцветный газ без запаха и вкуса. Жидкий кислород имеет бледно-голубой цвет. Твердый кислород существует по крайней мере в трех кристаллических модификациях. Газообразный кислород растворим в воде и, вероятно, образует непрочные соединения типа O 2 Ч H 2 O, а возможно, и O 2 Ч 2H 2 O. Химические свойства. Как уже упоминалось, химическая активность кислорода определяется его способностью диссоциировать на атомы O , которые и отличаются высокой реакционной способностью. Только наиболее активные металлы и минералы реагируют с O 2 c высокой скоростью при низких температурах. Наиболее активные щелочные (IA подгруппы) и некоторые щелочноземельные (IIA подгруппы) металлы образуют с O 2 пероксиды типа NaO 2 и BaO 2 . Другие же элементы и соединения реагируют только с продуктом диссоциации O 2 . В подходящих условиях все элементы, исключая благородные газы и металлы Pt, Ag, Au, реагируют с кислородом. Эти металлы тоже образуют оксиды, но при особых условиях.

Электронная структура кислорода (1s

2 2s 2 2p 4 ) такова, что атом O принимает для образования устойчивой внешней электронной оболочки два электрона на внешний уровень, образуя ион O 2– . В оксидах щелочных металлов образуется преимущественно ионная связь. Можно полагать, что электроны этих металлов практически целиком оттянуты к кислороду. В оксидах менее активных металлов и неметаллов переход электронов неполный, и плотность отрицательного заряда на кислороде менее выражена, поэтому связь менее ионная или более ковалентная. При окислении металлов кислородом происходит выделение тепла, величина которого коррелирует с прочностью связи M–O . При окислении некоторых неметаллов происходит поглощение тепла, что свидетельствует об их менее прочных связях с кислородом. Такие оксиды термически неустойчивы (или менее стабильны, чем оксиды с ионной связью) и часто отличаются высокой химической активностью. В таблице приведены для сравнения значения энтальпий образования оксидов наиболее типичных металлов, переходных металлов и неметаллов, элементов A - и B -подгрупп (знак минус означает выделение тепла).
Реакции Энтальпии образования, кДж/моль
4Na + O 2 ® 2Na 2 O a
2Mg + O 2 ® 2MgO
4Al + 3O 2 ® 2Al 2 O 3
Si + O 2 ® SiO 2
4P + 5O 2 ® P 4 O 10
S + O 2 ® SO 2
2Cl 2 + 7O 2 ® 2Cl 2 O 7
2Hg + O 2 ® 2HgO
2Cr + 3O 2 ® 2CrO 3
3Fe + 2O 2 ® Fe 3 O 4
a При нормальных условиях предпочтительнее образование Na 2 O 2 .
О свойствах оксидов можно сделать несколько общих выводов:

1. Температуры плавления оксидов щелочных металлов уменьшаются с ростом атомного радиуса металла; так,

t пл (Cs 2 O) t пл (Na 2 O) . Оксиды, в которых преобладает ионная связь, имеют более высокие температуры плавления, чем температуры плавления ковалентных оксидов: t пл (Na 2 O) > t пл (SO 2). 2. Оксиды химически активных металлов (IA–IIIA подгрупп) более термически стабильны, чем оксиды переходных металлов и неметаллов. Оксиды тяжелых металлов в высшей степени окисления при термической диссоциации образуют оксиды с более низкими степенями окисления (например, 2Hg 2+ O ® (Hg +) 2 O + 0,5O 2 ® 2Hg 0 + O 2 ). Такие оксиды в высоких степенях окисления могут быть хорошими окислителями. 3. Наиболее активные металлы взаимодействуют с молекулярным кислородом при повышенных температурах с образованием пероксидов: Sr + O 2 ® SrO 2 . 4. Оксиды активных металлов образуют бесцветные растворы, тогда как оксиды большинства переходных металлов окрашены и практически нерастворимы. Водные растворы оксидов металлов проявляют основные свойства и являются гидроксидами, содержащими OH -группы, а оксиды неметаллов в водных растворах образуют кислоты, содержащие ион H + . 5. Металлы и неметаллы A-подгрупп образуют оксиды со степенью окисления, соответствующей номеру группы, например, Na, Be и B образуют Na 1 2 O, Be II O и B 2 III O 3 , а неметаллы IVA–VIIA подгрупп C, N, S, Cl образуют C IV O 2 , N V 2 O 5 , S VI O 3 , Cl VII 2 O 7 . Номер группы элемента коррелирует только с максимальной степенью окисления, так как возможны оксиды и с более низкими степенями окисления элементов. В процессах горения соединений типичными продуктами являются оксиды, например: 2H 2 S + 3O 2 ® 2SO 2 + 2H 2 O Углеродсодержащие вещества и углеводороды при слабом нагревании окисляются (сгорают) до CO 2 и H 2 O . Примерами таких веществ являются топлива – древесина, нефть, спирты (а также углерод – каменный уголь, кокс и древесный уголь ) . Тепло от процесса горения утилизируется на производство пара (а далее электричества или идет на силовые установки), а также на отопление домов. Типичные уравнения для процессов горения таковы:

а) древесина (целлюлоза):

(C 6 H 10 O 5) n + 6n O 2 ® 6n CO 2 + 5n H 2 O + тепловая энергия

б) нефть или газ (бензин C

8 H 18 или природный газ CH 4):

2C 8 H 18 + 25O 2

® 16CO 2 + 18H 2 O + тепловая энергия CH 4 + 2O 2 ® CO 2 + 2H 2 O + тепловая энергия C 2 H 5 OH + 3O 2 ® 2CO 2 + 3H 2 O + тепловая энергия

г) углерод (каменный или древесный уголь, кокс):

2C + O 2 ® 2CO + тепловая энергия 2CO + O 2 ® 2CO 2 + тепловая энергия

Горению подвержены также ряд C-, H-, N-, O-содержащих соединений с высоким запасом энергии. Кислород для окисления может использоваться не только из атмосферы (как в предыдущих реакциях), но и из самого вещества. Для инициирования реакции достаточно небольшого активирования реакции, например удара или встряски. При этих реакциях продуктами горения также являются оксиды, но все они газообразны и быстро расширяются при высокой конечной температуре процесса. Поэтому такие вещества являются взрывчатыми. Примерами взрывчатых веществ служат тринитроглицерин (или нитроглицерин) C

3 H 5 (NO 3) 3 и тринитротолуол (или ТНТ) C 7 H 5 (NO 2) 3 . См. также ХИМИЧЕСКОЕ И БИОЛОГИЧЕСКОЕ ОРУЖИЕ.

Оксиды металлов или неметаллов с низшими степенями окисления элемента реагируют с кислородом с образованием оксидов высоких степеней окисления этого элемента:

Оксиды природные, полученные из руд или синтезированные, служат сырьем для получения многих важных металлов, например, железа из Fe 2 O 3 (гематит) и Fe 3 O 4 (магнетит), алюминия из Al 2 O 3 (глинозем), магния из MgO (магнезия). Оксиды легких металлов используются в химической промышленности для получения щелочей или оснований. Пероксид калия KO 2 находит необычное применение, так как в присутствии влаги и в результате реакции с ней выделяет кислород. Поэтому KO 2 применяют в респираторах для получения кислорода. Влага из выдыхаемого воздуха выделяет в респираторе кислород, а KOH поглощает CO 2 . Получение оксида CaO и гидроксида кальция Ca(OH) 2 – многотоннажное производство в технологии керамики и цемента. Вода (оксид водорода). Важность воды H 2 O как в лабораторной практике для химических реакций, так и в процессах жизнедеятельности требует особого рассмотрения этого вещества (см. также ВОДОРОД; ВОДА, ЛЕД И ПАР) . Как уже упоминалось, при прямом взаимодействии кислорода и водорода в условиях, например, искрового разряда происходят взрыв и образование воды, при этом выделяется 143 кДж/(моль H 2 O). Молекула воды имеет почти тетраэдрическое строение, угол H–O–H равен 104 ° 30 ў . Связи в молекуле частично ионные (30%) и частично ковалентные с высокой плотностью отрицательного заряда у кислорода и соответственно положительных зарядов у водорода: Из-за высокой прочности связей H–O водород с трудом отщепляется от кислорода и вода проявляет очень слабые кислотные свойства. Многие свойства воды определяются распределением зарядов. Например, молекула воды образует с ионом металла гидрат: Одну электронную пару вода отдает акцептору, которым может быть H + : Молекулы воды связываются друг с другом в большие агрегаты (H 2 O) x слабыми водородными связями (энергия связи ~ 21 кДж) Вода в такой системе водородных связей подвергается диссоциации в очень слабой степени, достигающей концентрации 10 –7 моль/л. Очевидно, расщепление связи, показанное квадратными скобками, приводит к образованию гидроксид-иона OH – и иона гидроксония H 3 O + : Пероксид водорода. Другим соединением, состоящим только из водорода и кислорода , является пероксид водорода H 2 O 2 . Название «пероксид» принято для соединений, содержащих связь –O–O– . Пероксид водорода имеет строение асимметрично изогнутой цепи: Пероксид водорода получают по реакции пероксида металла с кислотой BaO 2 + H 2 SO 4 ® BaSO 4 + H 2 O 2 либо разложением пероксодисерной кислоты H 2 S 2 O 8 , которую получают электролитически: Концентрированный раствор H 2 O 2 может быть получен специальными методами дистилляции. Пероксид водорода используют как окислитель в двигателях ракет. Разбавленные растворы пероксида служат антисептиками, отбеливателями и мягкими окислителями. H 2 O 2 добавляют ко многим кислотам и оксидам для получения соединений, аналогичных гидратам. В присутствии сильного окислителя (например, MnO 2 или MnO 4 –) H 2 O 2 окисляется, выделяя кислород и воду. Оксоанионы и оксокатионы – кислородсодержащие частицы, имеющие остаточный отрицательный (оксоанионы) или остаточный положительный (оксокатионы) заряд. Ион O 2– имеет высокое сродство (высокую реакционную способность) к положительно заряженным частицам типа H + . Простейшим представителем стабильных оксоанионов является гидроксид-ион OH – . Это объясняет неустойчивость атомов с высокой зарядовой плотностью и их частичную стабилизацию в результате присоединения частицы с положительным зарядом. Поэтому при действии активного металла (или его оксида) на воду образуется OH – , а не O 2– : ® 2Na + + 2OH – + H 2 или ® 2Na + + 2OH – Более сложные оксоанионы образуются из кислорода с ионом металла или неметаллической частицей, имеющей большой положительный заряд, в результате получается низкозаряженная частица, обладающая большей стабильностью, например: Озон. Кроме атомарного кислорода O и двухатомной молекулы O 2 существует третья форма кислорода – озон O 3 , содержащий три кислородных атома. Все три формы являются аллотропными модификациями. Озон образуется при пропускании тихого электрического разряда через сухой кислород: 3O 2 2O 3 . При этом образуется несколько процентов озона. Реакция катализируется ионами металлов. Озон имеет острый резкий запах, который можно обнаружить вблизи работающих электрических машин или в окрестности атмосферного электрического разряда. Газ имеет голубоватый цвет и конденсируется при –112 ° С в темноголубую жидкость, а при –193 ° С образуется темнопурпуровая твердая фаза. Жидкий озон слаборастворим в жидком кислороде, а в 100 г воды при 0 ° С растворяется 49 см 3 O 3 . По химическим свойствам озон намного активнее кислорода и по окислительным свойствам уступает только O, F 2 и OF 2 (дифториду кислорода). При обычном окислении образуются оксид и молекулярный кислород O 2 . При действии озона на активные металлы в особых условиях образуются озониды состава K + O 3 – . Озон получают в промышленности для специальных целей, он является хорошим дезинфицирующим средством и используется для очистки воды и как отбеливатель, улучшает состояние атмосферы в закрытых системах, дезинфицирует предметы и пищу, ускоряет созревание зерна и фруктов. В химической лаборатории часто используют озонатор для получения озона, необходимого для некоторых методов химического анализа и синтеза. Каучук легко разрушается даже под действием малых концентраций озона. В некоторых промышленных городах значительная концентрация озона в воздухе приводит к быстрой порче резиновых изделий, если они не защищены антиоксидантами. Озон очень токсичен. Постоянное вдыхание воздуха даже с очень низкими концентрациями озона вызывает головную боль, тошноту и другие неприятные состояния. ЛИТЕРАТУРА Разумовский С.Д. Кислород – элементарные формы и свойства . М., 1979
Термодинамические свойства кислорода . М., 1981

При и резке металла осуществляется высокотемпературным газовым пламенем, получаемым при сжигании горючего газа или паров жидкости в смеси с технически чистым кислородом.

Кислород является самым распространенным элементом на земле , встречающимся в виде химических соединений с различными веществами: в земле - до 50% по массе, в соединении с водородом в воде - около 86% по массе и в воздухе - до 21% по объему и 23% по массе.

Кислород при нормальных условиях (температура 20°С, давление 0,1 МПа) - это бесцветный, негорючий газ, немного тяжелее воздуха, не имеющий запаха, но активно поддерживающий горение. При нормальном атмосферном давлении и температуре 0°С масса 1 м 3 кислорода равна 1,43 кг, а при температуре 20°С и нормальном атмосферном давлении - 1,33 кг.

Кислород имеет высокую химическую активность , образуя соединения со всеми химическими элементами, кроме (аргона, гелия, ксенона, криптона и неона). Реакции соединения с кислородом протекают с выделением большого количества теплоты, т. е. носят экзотермический характер.

При соприкосновении сжатого газообразного кислорода с органическими веществами, маслами, жирами, угольной пылью, горючими пластмассами может произойти их самовоспламенение в результате выделения теплоты при быстром сжатии кислорода, трении и ударе твердых частиц о металл, а также электростатического искрового разряда. Поэтому при использовании кислорода необходимо тщательно следить за тем, чтобы он не находился в контакте с легковоспламеняющимися и горючими веществами.

Всю кислородную аппаратуру, кислородопроводы и баллоны необходимо тщательно обезжиривать. способен образовывать в широких пределах взрывчатые смеси с горючими газами или парами жидких горючих, что также может привести к взрывам при наличии открытого огня или даже искры.

Отмеченные особенности кислорода следует всегда иметь в виду при использовании его в процессах газопламенной обработки.

Атмосферный воздух в основном представляет собой механическую смесь трех газов при следующем их объемном содержании: азота - 78,08%, кислорода - 20,95%, аргона-0,94%, остальное - углекислый газ, закись азота и др. Кислород получают разделением воздуха на кислород и методом глубокого охлаждения (сжижения), попутно идет отделение аргона, применение которого при непрерывно возрастает. Азот применяют как защитный газ при сварке меди.

Кислород можно получать химическим способом или электролизом воды. Химические способы малопроизводительны и неэкономичны. При электролизе воды постоянным током кислород получают как побочный продукт при производстве чистого водорода.

В промышленности кислород получают из атмосферного воздуха методом глубокого охлаждения и ректификации. В установках для получения кислорода и азота из воздуха последний очищают от вредных примесей, сжимают в компрессоре до соответствующего давления холодильного цикла 0,6-20 МПа и охлаждают в теплообменниках до температуры сжижения, разница в температурах сжижения кислорода и азота составляет 13°С, что достаточно для их полного разделения в жидкой фазе.

Жидкий чистый кислород накапливается в воздухоразделительном аппарате, испаряется и собирается в газгольдере, откуда компрессором его накачивают в баллоны под давлением до 20 МПа.

Технический кислород транспортируют также по трубопроводу. Давление кислорода, транспортируемого по трубопроводу, должно быть согласовано между изготовителем и потребителем. К месту кислород доставляется в кислородных баллонах, и в жидком виде - в специальных сосудах с хорошей теплоизоляцией.

Для превращения жидкого кислорода в газ используют газификаторы или насосы с испарителями для жидкого кислорода. При нормальном атмосферном давлении и температуре 20°С 1 дм 3 жидкого кислорода при испарении дает 860 дм 3 газообразного. Поэтому доставлять кислород к месту сварки целесообразно в жидком состоянии, так как при этом в 10 раз уменьшается масса тары, что позволяет экономить металл на изготовление баллонов, уменьшать расходы на транспортировку и хранение баллонов.

Для сварки и резки по -78 технический кислород выпускается трех сортов:

  • 1-й - чистотой не менее 99,7%
  • 2-й - не менее 99,5%
  • 3-й - не менее 99,2% по объему

Чистота кислорода имеет большое значение для кислородной резки. Чем меньше содержится в нем газовых примесей, тем выше скорость реза, чище и меньше расход кислорода.

>>

Химические свойства кислорода. Оксиды

В этом параграфе речь идет:

> о реакциях кислорода с простыми и сложными веществами;
> о реакциях соединения;
> о соединениях, которые называют оксидами.

Химические свойства каждого вещества проявляются в химических реакциях при его участии.

Кислород - один из наиболее активных неметаллов. Ho в обычных условиях он реагирует с немногими веществами. Его реакционная способность существенно возрастает с повышением температуры.

Реакции кислорода с простыми веществами.

Кислород реагирует, как правило, при нагревании, с большинством неметаллов и почти со всеми металлами.

Реакция с углем (углеродом). Известно, что уголь, нагретый на воздухе до высокой температуры, загорается. Это свидетельствует о протекании химической реакции вещества с кислородом. Теплоту, которая выделяется при этом, используют, например, для обогрева домов в сельской местности.

Основным продуктом сгорания угля является углекислый газ. Его химическая формула - CO 2 . Уголь - смесь многих веществ. Массовая доля Карбона в нем превышает 80 % . Считая, что уголь состоит только из атомов Карбона, напишем соответствующее химическое уравнение:

t
С + O 2 = CO 2 .

Карбон образует простые вещества - графит и алмаз. Они имеют общее название - углерод - и взаимодействуют с кислородом при нагревании согласно приведенному химическому уравнению 1 .

Реакции, при которых из нескольких веществ образуется одно, называют реакциями соединения.

Реакция с серой.

Это химическое превращение осуществляет каждый, когда зажигает спичку; сера входит в состав ее головки. В лаборатории реакцию серы с кислородом проводят в вытяжном шкафу. Небольшое количество серы (светло-желтый порошок или кристаллы) нагревают в железной ложке. Вещество сначала плавится, потом загорается в результате взаимодействия с кислородом воздуха и горит едва заметным синим пламенем (рис. 56, б). Появляется резкий запах продукта реакции - сернистого газа (этот запах мы ощущаем в момент загорания спички). Химическая формула сернистого газа - SO 2 , а уравнение реакции -
t
S + O 2 = SO 2 .

Рис. 56. Сера (а) и ее горение на воздухе (б) и в кислороде (в)

1 В случае недостаточного количества кислорода образуется другое соединение Карбона с Оксигеном - угарный газ
t
CO: 2С + O 2 = 2СО.



Рис. 57. Красный фосфор (а) и его горение на воздухе (б) и в кислороде (в)

Если ложку с горящей серой поместить в сосуд с кислородом, то сера будет гореть более ярким пламенем, чем на воздухе (рис. 56, в). Это можно объяснить тем, что молекул O 2 в чистом кислороде больше, чем в воздухе.

Реакция с фосфором. Фосфор, как и сера, горит в кислороде интенсивнее, чем на воздухе (рис. 57). Продуктом реакции является белое твердое вещество - фосфор(\/) оксид (его мелкие частицы образуют дым):
t
P + O 2 -> P 2 0 5 .

Превратите схему реакции в химическое уравнение.

Реакция с магнием.

Раньше эту реакцию использовали фотографы для создания яркого освещения («магниевая вспышка») при фотосъемке. В химической лаборатории соответствующий опыт проводят так. Металлическим пинцетом берут магниевую ленту и поджигают на воздухе. Магний сгорает ослепительно-белым пламенем (рис. 58, б); смотреть на него нельзя! В результате реакции образуется белое твердое вещество. Это соединение Магния с Оксигеном; его название - магний оксид.

Рис. 58. Магний (а) и его горение на воздухе (б)

Составьте уравнение реакции магния с кислородом.

Реакции кислорода со сложными веществами. Кислород может взаимодействовать с некоторыми оксигенсодержащими соединениями. Например, угарный газ CO горит на воздухе с образованием углекислого газа:

t
2СО + O 2 = 2С0 2 .

Немало реакций кислорода со сложными веществами мы осуществляем в повседневной жизни, сжигая природный газ (метан), спирт, древесину, бумагу, керосин и др. При их горении образуются углекислый газ и водяной пар:
t
CH 4 + 20 2 = CO 2 + 2Н 2 О;
метан
t
C 2 H 5 OH + 30 2 = 2С0 2 + 3H 2 О.
спирт


Оксиды.

Продуктами всех реакций, рассмотренных в параграфе, являются бинарные соединения элементов с Оксигеном.

Соединение, образованное двумя элементами, одним из которых является Оксиген, называют оксидом.

Общая формула оксидов - EnOm.

Каждый оксид имеет химическое название, а некоторые - еще и традиционные, или тривиальные 1 , названия (табл. 4). Химическое название оксида состоит из двух слов. Первым словом является название соответствующего элемента, а вторым - слово «оксид». Если элемент имеет переменную валентность, то он может образовывать несколько оксидов. Их названия должны отличаться. Для этого после названия элемента указывают (без отступа) римской цифрой в скобках значение его валентности в оксиде. Пример такого названия соединения: купрум(II) оксид (читается « купрум-два-оксид »).

Таблица 4

1 Термин происходит от латинского слова trivialis - обыкновенный.

Выводы

Кислород - химически активное вещество. Он взаимодействует с большинством простых веществ, а также со сложными веществами. Продуктами таких реакций являются соединения элементов с Оксигеном - оксиды.

Реакции, при которых из нескольких веществ образуется одно, называют реакциями соединения.

?
135. Чем различаются реакции соединения и разложения?

136. Превратите схемы реакций в химические уравнения:

а) Li + O 2 -> Li 2 O;
N2 + O 2 -> NO;

б) SO 2 + O 2 -> SO 3 ;
CrO + O 2 -> Cr 2 O 3 .

137. Выберите среди приведенных формул те, которые отвечают оксидам:

O 2 , NaOH, H 2 O, HCI, I 2 O 5 , FeO.

138. Дайте химические названия оксидам с такими формулами:

NO, Ti 2 O 3 , Cu 2 O, MnO 2 , CI 2 O 7 , V 2 O 5 , CrO 3 .

Примите во внимание, что элементы, которые образуют эти оксиды, имеют переменную валентность.

139. Запишите формулы: а) плюмбум(I\/) оксида; б) хром(III) оксида;
в) хлор(I) оксида; г) нитроген(I\/) оксида; д) осмий(\/III) оксида.

140. Допишите формулы простых веществ в схемах реакций и составьте химические уравнения:

а) ... + ... -> CaO;

б) NO + ... -> NO 2 ; ... + ... -> As 2 O 3 ; Mn 2 O 3 + ... -> MnO 2 .

141. Напишите уравнения реакций, с помощью которых можно осущест­вить такие «цепочки» превращений, т. е. из первого вещества полу­чить второе, из второго - третье:

а) С -> CO -> CO 2 ;
б) P -> P 2 0 3 -> P 2 0 5 ;
в) Cu -> Cu 2 O -> CuO.

142.. Составьте уравнения реакций, которые происходят при горении на воздухе ацетона (CH 3) 2 CO и эфира (C 2 H 5) 2 O. Продуктами каждой ре­акции являются углекислый газ и вода.

143. Массовая доля Оксигена в оксиде EO 2 равна 26 %. Определите элемент Е.

144. Две колбы заполнены кислородом. После их герметизации в одной колбе сожгли избыток магния, а в другой - избыток серы. В какой колбе образовался вакуум? Ответ объясните.

Попель П. П., Крикля Л. С., Хімія: Підруч. для 7 кл. загальноосвіт. навч. закл. - К.: ВЦ «Академія», 2008. - 136 с.: іл.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

Строение внешней оболочки: 1 s 2 2 s 2 2р 4 , что говорит о том, что кислороду легче присоединить к себе 2 электрона до заполнения внешнего уровня, чем отдать. Поэтому кислород является окислителем.

Изотопы кислорода.

Существует 3 устойчивые формы кислорода : 16 О, 17 О и 18 О, среднее содержание которых составляет соответственно 99,759%, 0,037% и 0,204% от общего числа атомов .

Наиболее часто встречающийся 16 О , так как он наиболее легкий (состоит из 8 протонов и 8 электронов), что делает его весьма устойчивым.

Физические свойства кислорода.

Способы получения кислорода.

Существует 4 способа получения кислорода:

1. Электролиз воды.

2. Промышленный способ: перегонка воздушной смеси (кислород, как более тяжелый элемент остается в смеси, а азот улетучивается)

3. Лабораторные способы разложения оксидов , пероксидов , солей:

2KMnO 4 = K 2 MnO 4 + MnO 2 + O 2,

2BaO 2 = 2BaO + O 2,

2KNO 3 = 2KNO 2 + O 2 .

4. Из пероксидов (используют в космосе для регенерации O 2 из углекислого газа):

2 K 2 O 2 + 2 CO 2 = 2 K 2 CO 3 + O 2.

Химические свойства кислорода.

С металлами реагирует уже при комнатной температуре:

a + O 2 = 2CaO,

2Mg +O 2 = 2MgO,

С неметаллами (при нагревании):

S + O 2 = SO 2 (Т =250°С ),

C + O 2 = CO 2 (T=700°C),

O 2 взаимодействует со сложными соединениями:

2NO + O 2 = 2NO 2,

2H 2 S + O 2 = 2S + 2H 2 O,

Нахождение кислорода в природе.

Кислород - наиболее часто встречающийся химический элемент. Связанный кислород составляет около 6 / 7 массы водной оболочки Земли - гидросферы (85,82% по массе), почти половину литосферы (47% по массе), и только в атмосфере, где кислород находится в свободном состоянии, он занимает второе место (23,15% по массе) после азота.

Кислород образует большое количество минералов: силикаты, кварц, оксиды железа, карбонаты, сульфаты, нитраты. Он входит в состав клеток живых организмов, участвует в процессах дыхания, диффузии, кровотока, в реакция окисления и восстановления.

Кислород - основной компонент фотосинтеза.