Проверка качества пенообразователей и определение кратности пены. Определение объема помещения (объем тушения), который можно заполнить воздушно-механической пеной средней кратности Как классифицируется вмп в зависимости от кратности

Тема Назначение виды и устройство оборудования для получения воздушно-механической пены

Вид занятия : классно-групповое

Отводимое время : 1 учебный час.

Литература: учебник «Пожарная техника»

Развернутый план занятий.

Пенообразователи общего назначения изготовляются на основе дешевого и доступного сырья. Используются для получения пены и растворов смачивателей.

Предназначены для тушения пожаров нефтепродуктов, дерева, ткани, бумаги, торфа, хлопка, каучука, пластмасс и т.д. Служат для получения пены низкой, средней кратности и высокой.

К ним относятся:

  • ТЭАС – А

Преобразователи целевого назначения

Пенообразователи целевого назначения используются для получения пены, при тушении пожаров нефтепродуктов и различных классов горючих жидкостей наиболее пожароопасных объектов, а также для применения с морской водой, при низкой температуре и других особых условиях. Некоторые из них изготавливаются на основе дефицитного дорогостоящего сырья.

К ним относятся:

    Пленкообразующий

  • Универсальный

Физико-химические и огнетушащие свойства пен.

Огнетушащие пены разделяются на химическую и воздушно - механическую.

Химическая пена (кратность до 6)получают в результате химической реакции между кислой и щелочной частями:

Fe2(S04)3+6NaHC03-)-3Na2S04+2Fe(OH)3+6C02

H 2 S 04+2 NaHC 03-> Na 2 S 04+2 C 02+2 H 20

Воздушно - механическая пена получается путем механического перемещения трех компонентов: воды, пенообразователя и воздуха.

Согласно ГОСТ 12.1.114-82 ВМП подразделяется на три вида:

    ВМП низкой кратности К<20 (для расчетов К=10) ВМП

    средней кратности 20^К^200 (для расчетов К=100)

    ВМП высокой кратности К>200 (для расчетов К=1000)

Физико-химические и огнетушащие свойства пен и область их применения .

Огнетушащие пены представляют собой совокупность пузырьков ,

состоящих из

жидкостной оболочки, заполненной воздухом или газами, т.е. пена - это

концентрированная эмульсия газа и в жидкости.

Химическая пена состоит на 80% С02 (углекислого газа) , 19,7% водного раствора и 0,3% пенообразующих веществ.

ВМП состоит из 83-99,6% воздуха и 0,4-17% водного раствора ПО.

Основными свойствами пен независимо от способа их получения являются следующие:

1. Кратность пены - это отношение объема пены к объему пенообразующей жидкости. Кратность зависит от типа, качества и концентрации ПО в воде, от конструкции пенного прибора, от напора перед распылителем и от температуры подсасываемого воздуха.

2. Стойкость пены - это способность противостоять разрушению в течении определенного времени. Стойкость пены - это время в течении которого пена разрушается на 50% первоначального объема. Стойкость зависит: от вида ПО, свойств и температуры веществ, с которыми она взаимодействует, способа подачи, высоты пенного слоя. т=3,8-18мин (САМПО - несколько часов)

3. Высокая теплоемкость - пена, разрушаясь, охлаждает горящие вещества (строительные конструкции, ЛВЖ и ГЖ) за счет имеющегося в ее структуре водного раствора пенообразователя.

4. Небольшая плотность 4-170 кг/м 3 . Плотность зависит от кратности пены, Пена плавает на поверхности жидкостей, не создает чрезмерной нагрузки на покрытия, исключает потерю устойчивости судна при тушении пожаров.

5. Низкая теплопроводность - она близка к теплопроводности неподвижных газов. Это позволяет использовать пену в качестве теплоизоляционного экрана от действия лучистой энергии.

6.Изолирующая способность - при тушении пеной, слой пены препятствует проникновению паров в зону горения и тепла из зоны горения к поверхности вещества.

7. Вязкост ь - способность пены к растеканию.

8. Дисперстность - степень измельчения т.е. размеры пузырьков. С увеличением дисперстности пены, растет время ее существования, вязкость и парогазонепроницаемость.

Способ получения пен и предназначение для пожаротушения:

    Пена низкой кратности – стволы СВЭ; СВПЭ; ОРТ-50 с насадкой – тушение хлопка и родственных веществ, так же применяется для тушения резина образных изделий и паралона.

    Пена средней кратности – ГПС-600; ГПС-800; ГПС – 2000 – тушение ЛВЖ.

    Пена высокой кратности - получается ТОЛЬКО при помощи пожарного дымососа. Тушение объемных пожаров (подвалы). В этой пене можно дышать .

Схемы боевого развертывания с подачей ВМП

ПЕНООБРАЗОВАТЕЛИ
ДЛЯ ТУШЕНИЯ ПОЖАРОВ

О бщие технические требования
и методы испытаний

Москва

Стандартинформ

2012

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 РАЗРАБОТАН Государственным образовательным бюджетным учреждением высшего профессионального образования «Академия государственной противопожарной службы» МЧС России (Академия ГПС МЧС России) и Федеральным государственным бюджетным учреждением «Всероссийский ордена «Знак Почета» научно-исследовательский институт противопожарной обороны МЧС России» (ФГБУ ВНИИПО МЧС России)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 274 «Пожарная безопасность»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 14 мая 2012 г. № 66-ст

5 ПЕРЕИЗДАНИЕ. Январь 2013 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок - в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

ГОСТ Р 50588-2012

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНООБРАЗОВАТЕЛИ ДЛЯ ТУШЕНИЯ ПОЖАРОВ

Общие технические требования и методы испытаний

Foaming agents for fire extinguishing. General technical requirements and test methods

Дата введения - 2012-09-01

1 Область применения

Настоящий стандарт распространяется на пенообразователи для приготовления водных растворов, предназначенных для получения с помощью специальной аппаратуры воздушно-механической пены для тушения пожаров, и пенообразователи для приготовления водных растворов, предназначенных для тушения пожаров, в качестве смачивателей (далее - смачиватели).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

Таблица 1 - Показатели качества смачивателей и пенообразователей типов WA и S при использовании дистиллированной и питьевой воды

Значение для

Метод испытания

смачивателей типа WA

пенообразователей типа S

1 Внешний вид

× с -1 , не более

4 Динамическая вязкость, Па × с, не более

Должна быть указана в нормативном или техническом документе на конкретный пенообразователь или смачиватель

6,5 - 8,5

Минус 3

Минус 3

Низкая, не более

Средняя, не менее

Не нормируется

Высокая, не менее

То же

Не нормируется

× с) (стендовая методика)

Не нормируется

Пеной средней кратности при интенсивности (0,032 ± 0,002), дм 3 /(м 2 × с)

То же

Таблица 2 - Показатели качества смачивателей и пенообразователей типов WA и S при использовании жесткой и морской воды

Наименование показателя

Значение для

Метод испытания

смачивателей типа WA

пенообразователей типа S

1 Внешний вид

Однородная жидкость без осадка и расслоения

2 Плотность при 20 °С, кг/см 3

Должна быть указана в нормативном или техническом документе на конкретный пенообразователь или смачиватель

3 Кинематическая вязкость при 20 °С, мм 2 × с -1 , не более

4 Динамическая вязкость, Па × с, не более

Должна быть указана в нормативном или техническом документе на конкретный пенообразователь или смачиватель

5 Водородный показатель рН пенообразователя (смачивателя)

6,5 - 8,5

6 Температура застывания, °С, не выше

Минус 3

Минус 3

7 Кратность пены из рабочего раствора:

Низкая, не более

Средняя, не менее

Не нормируется

Высокая, не менее

То же

8 Показатель устойчивости пены низкой, средней и высокой кратности

Не нормируется

Должен быть указан в нормативном или техническом документе на конкретный пенообразователь

9 Время тушения н-гептана при установленной интенсивности подачи рабочего раствора, с, не более:

Пеной средней кратности при интенсивности (0,032 ± 0,002) дм 3 /(м 2 × с) (стендовая методика)

Не нормируется

Пеной средней кратности при интенсивности (0,032 ± 0,002) дм 3 /(м 2 × с)

То же

10 Поверхностное натяжение рабочего раствора, мН/м, не более

Должно быть указано в нормативном или техническом документе на конкретный пенообразователь или смачиватель

11 Показатель смачивающей способности, с, не более

Должен быть указан в нормативном или техническом документе на конкретный пенообразователь или смачиватель

Таблица 3 - Показатели качества пенообразователей типов S/AR; AFFF/AR, FP/AR, FFFP/AR, AFFF, AFFF/AR-LV, FP, FFFP при использовании дистиллированной и питьевой воды

Наименование показателя

Метод испытания

типа S/AR

типов AFFF/AR, FP/AR, FFFP/AR

1 Внешний вид

Однородная жидкость без осадка и расслоения

2 Плотность при 20 °С, кг/см 3

3 Кинематическая вязкость при 20 °С, мм 2 × с -1 , не более

Должна быть указана в нормативном или техническом документе на конкретный пенообразователь

4 Динамическая вязкость, Па × с, не более

Должна быть указана в нормативном или техническом документе на конкретный пенообразователь

6,5 - 8,5

6 Температура застывания, °С, не выше

Минус 3

Минус 15

Минус 15

7 Кратность пены из рабочего раствора:

Низкая, не более

Средняя, не менее

60 *

40 *

40 *

Высокая, не менее

200 *

200 *

200 *

8 Показатель устойчивости пены низкой, средней и высокой кратности

Должен быть указан в нормативном или техническом документе на конкретный пенообразователь

9 Время тушения н-гептана при установленной интенсивности подачи рабочего раствора, с, не более:

× с)

Пеной средней кратности при интенсивности (0,032 ± 0,002) дм 3 /(м 2 × с)

120 *

100 *

100 *

× с)

120 *

90 *

90 *

10 Время повторного воспламенения модельного очага после тушения пеной, с, не менее::

Низкой кратности

Средней кратности

400 *

400 *

Должно быть указано в нормативном или техническом документе на конкретный пенообразователь

Не нормируется

Должно быть указано в нормативном или техническом документе на конкретный пенообразователь

Таблица 4 - Показатели качества пенообразователей типов S/AR, AFFF/AR, FP/AR, FFFP/AR, AFFF, AFFF/AR-LV, FP, FFFP при использовании жесткой и морской воды

Значение для пенообразователей

Метод испытания

типа S/AR

типов AFFF/AR, FP/AR, FFFP/AR

типов AFFF, AFFF/AR-LV, FP, FFFP

1 Внешний вид

Однородная жидкость без осадка и расслоения

2 Плотность при 20 °С, кг/см 3

Должна быть указана в нормативном или техническом документе на конкретный пенообразователь

3 Кинематическая вязкость при 20 °С, мм 2 × с -1 , не более

Должна быть указана в нормативном или техническом документе на конкретный пенообразователь

4 Динамическая вязкость, Па × с, не более

Должна быть указана в нормативном или техническом документе на конкретный пенообразователь

5 Водородный показатель рН пенообразователя

6,5 - 8,5

6 Температура застывания, °С, не выше

Минус 3

Минус 15

Минус 15

7 Кратность пены из рабочего раствора:

Низкая, не более

Средняя, не менее

60 *

40 *

40 *

Высокая, не менее

200 *

200 *

200 *

8 Показатель устойчивости пены низкой, средней и высокой кратности

Должен быть указан в нормативном или техническом документе на конкретный пенообразователь

9 Время тушения н-гептана при установленной интенсивности подачи рабочего раствора, с, не более:

Пеной низкой кратности при интенсивности (0,059 ± 0,002) дм 3 /(м 2 × с)

Должно быть указано в нормативном или техническом документе на конкретный пенообразователь

Пеной средней кратности при интенсивности (0,032 ± 0,002) дм 3 /(м 2 × с)

120 *

120 *

120 *

Пеной высокой кратности при интенсивности (0,059 ± 0,002) дм 3 /(м 2 × с)

120 *

120 *

120 *

10 Время повторного воспламенения модельного очага после тушения пеной, с, не менее:

Низкой кратности

Должно быть указано в нормативном или техническом документе на конкретный пенообразователь

Средней кратности

То же

330 *

330 *

11 Поверхностное натяжение рабочего раствора, мН/м, не более

Должно быть указано в нормативном или техническом документе на конкретный пенообразователь

12 Межфазное натяжение рабочего раствора на границе с гептаном, мН/м, не менее

Не нормируется

Должно быть указано в нормативном или техническом документе на конкретный пенообразователь

* Для пенообразователей, образующих пену указанной кратности.

Воду питьевую с удельной электропроводностью (0,10 ± 0,05) См/м;

Воду жесткую (модель жесткой воды - согласно приложению );

Воду морскую (модель морской воды - согласно приложению ).

5.1.2 Периодический контроль пенообразователей и смачивателей следует проводить по показателям 1, 5, 7, 8, 10, 11 таблиц - .

Внешний вид пенообразователя определяют визуально в цилиндрах по ГОСТ 1770 из бесцветного стекла вместимостью 250 см 3 в проходящем рассеянном свете при температуре (20 ± 2) °С.

В два одинаковых цилиндра наливают по 200 см 3 пенообразователя и выдерживают их в течение (12 ± 2) ч при температуре (3 ± 2) °С, а затем при температуре (60 ± 2) °С в течение (12 ± 2) ч. При этом не должны наблюдаться расслоения и выпадение осадка, видимого невооруженным глазом. Для фторпротеиновых пенообразователей допускается осадок не более 0,25 % объема.

5.3.1 Определение кратности и показателя устойчивости пены низкой и средней кратности

Сущность метода заключается в измерении массы до и после заполнения пеной емкости для сбора пены с последующим вычислением кратности пены и определением показателя ее устойчивости.

5.3.1.1 Применяемое оборудование, средства измерений и растворы

Для определения кратности и показателя устойчивости пены низкой и средней кратности используют установку (см. рисунок ), в комплект которой входят:

Генератор пены средней кратности ГПС-100 (см. рисунок ) с распылителем диаметром 8,1 мм, позволяющим обеспечить объемный расход раствора (1,0 ± 0,1) дм 3 /с при давлении на стволе (0,60 ± 0,01) МПа или пожарный ствол для пены низкой кратности с распылителем (см. рисунок ), позволяющий обеспечить объемный расход раствора (0,166 ± 0,001) дм 3 /с при давлении на стволе (0,58 ± 0,02) МПа;

Насос водяной, обеспечивающий объемный расход раствора 0,16 - 1,10 дм 3 /с при давлении на стволе (0,58 ± 0,03) МПа;

Емкость металлическая цилиндрическая для сбора пены, вместимостью (200 ± 1) дм 3 , массой не более 12 кг, с отверстием диаметром (40 ± 5) мм по центру дна емкости для истечения рабочего раствора. Соотношение высоты емкости h к ее диаметру d равно 1,5;

Весы с пределом измерения не более 50 кг и погрешностью измерений не более 0,05 кг;

Емкость мерная для приготовления рабочего раствора пенообразователя, вместимостью 100 - 110 дм 3 ;

5.3.1.2 Подготовка к испытанию

Готовят 100 дм 3 рабочего раствора испытуемого пенообразователя. Проверяют работоспособность насосной установки. Измеряют массу пустой емкости для сбора пены.

Перед каждым определением измеряют температуру рабочего раствора пенообразователя, которая должна составлять (20 ± 2) °С.

1 - генератор пены или ствол низкой кратности; 2 - напорный рукав; 3, 4 - патрубок с манометром;
5 - водяной насос; 6 - всасывающий рукав; 7 - емкость с рабочим раствором пенообразователя;
8 - емкость для сбора пены; 9 - весы

Рисунок 1 - Схема установки для определения кратности и показателя устойчивости
пены

1 - корпус; 2 - пакет сеток; 3 - распылитель

Рисунок 2 - Генератор пены средней кратности ГПС-100

1 - труба; 2 - успокоитель; 3 - муфта; 4 , 7 - штуцер; 5 - распылитель; 6 - смеситель;
8 - переходник; 9 - напорная
головка

Рисунок 3 - Пожарный ствол пены низкой кратности

5.3.1.3 Проведение испытания

Для определения кратности пены средней кратности приготовленный рабочий раствор подают под давлением (0,60 ± 0,01) МПа в напорный рукав, на выходе которого установлен генератор ГПС-100. Отверстие на дне емкости закрывают. После получения устойчивой струи пены наполняют пеной емкость для сбора пены и взвешивают ее. При этом заполнение всего объема емкости должно быть равномерным, без образования пустот. Определяют массу пены как разность масс заполненной и пустой емкостей. Отверстие на дне емкости открывают для истечения раствора.

Для получения пены низкой кратности рабочий раствор подают на ствол низкой кратности под давлением (0,60 ± 0,01) МПа. Время заполнения емкости - (25 ± 5) с. Линейкой с пределом измерения 100 см определяют высоту пены Н с погрешностью до 1 см и вычисляют объем пены низкой кратности V, дм 3 , по формуле

(1)

где Н - высота пены, см;

d - диаметр емкости для сбора пены, см.

5.3.1.4 Обработка результатов

Кратность пены K вычисляют по формуле

где V п - объем пены, дм 3 ;

V p - объем раствора пенообразователя, дм 3 .

Показатель устойчивости пены низкой и средней кратности определяют как время выделения из пены 50 % массы раствора.

5.3.2 Определение кратности и показателя устойчивости пены высокой кратности

5.3.2.1 Применяемое оборудование, средства измерений и растворы

Для определения кратности и показателя устойчивости пены высокой кратности используют установку (см. рисунок ), в комплект которой входят:

1 - вентилятор с электроприводом; 2 - кран с манометром; 3 - распылитель; 4 - сетка

Рисунок 4 - Генератор пены высокой кратности

Емкость (см. рисунок ) цилиндрической формы с коническим дном для сбора пены вместимостью (500 ± 2) дм 3 и массой не более 20 кг. Диаметр емкости - (800 ± 5) мм, высота вертикальной стенки - (1000 ± 5) мм. В коническом дне емкости находится центральное отверстие диаметром 3 мм. На расстоянии 20 мм от центра центрального отверстия находятся восемь расположенных по окружности отверстий диаметром 3 мм для вытекания жидкости;

Рисунок 5 - Емкость для сбора пены

Насос водяной, обеспечивающий объемный расход раствора 0,10 - 0,15 дм 3 /с при давлении на стволе (0,50 ± 0,05) МПа;

Весы с пределом взвешивания не менее 30 кг и погрешностью измерений не более 0,05 кг;

Секундомер с пределом измерений 60 мин и ценой деления 0,2 с;

5.3.2.2 Подготовка к испытанию

Готовят 100 дм 3 рабочего раствора испытуемого пенообразователя. Проверяют работоспособность насосной установки. Определяют массу пустой емкости для сбора пены.

Перед каждым определением осуществляют контроль температуры рабочего раствора пенообразователя, которая должна составлять (20 ± 2) °С.

5.3.2.3 Проведение испытания

Условия проведения испытания: температура воздуха 15 °С - 25 °С, атмосферное давление 84 - 106,7 кПа, относительная влажность воздуха 40 % - 80 %.

Для определения кратности пены высокой кратности приготовленный рабочий раствор подают под давлением (0,50 ± 0,01) МПа в напорный рукав, на выходе которого установлен генератор пены высокой кратности. Отверстия на дне емкости закрывают. После получения устойчивой пенной струи наполняют емкость для сбора пены и взвешивают ее. При этом должно быть равномерное заполнение всего объема емкости без образования пустот. По разности масс заполненной и пустой емкостей находят массу пены. Отверстия на дне емкости открывают для истечения раствора. Кратность пены вычисляется по формуле ().

Показатель устойчивости пены определяют как время выделения из пены 50 % массы раствора.

5.3.2.4 Обработка результатов

За результат испытания принимают среднеарифметическое трех параллельных определений. Допустимое расхождение между результатами наиболее отличающихся определений с доверительной вероятностью 0,95 должно быть не более 10 % среднего значения.

Сущность метода заключается в определении времени тушения н-гептана в противне пеной низкой кратности при установленной интенсивности подачи рабочего раствора пенообразователя и определении времени повторного воспламенения поверхности горючего от внесенного в потушенный пеной модельный очаг горящего тигля.

5.4.1 Применяемое оборудование, средства измерений, реактивы и растворы:

Противень круглый, изготовленный из стали низкой прочности, с внутренним диаметром (1900 ± 15) мм, высотой (200 ± 10) мм, толщиной стенок (2,50 ± 0,05) мм, площадью дна (2,82 ± 0,05) м 2 ;

Насос водяной, обеспечивающий объемный расход раствора (0,166 ± 0,001) дм 3 /с при давлении на стволе (0,58 ± 0,02) МПа;

Ствол пожарный пены низкой кратности с распылителем (см. рисунок ), позволяющий обеспечить объемный расход раствора (0,166 ± 0,001) дм 3 /с при давлении на стволе (0,58 ± 0,02) МПа;

Тигель для повторного воспламенения, изготовленный из стали низкой прочности, с внутренним диаметром (295 ± 5) мм, высотой (130 ± 10) мм, толщиной стенок (2,50 ± 0,05) мм. Тигель имеет ручки, с помощью которых на шесте он подается в противень;

Емкость мерная для приготовления рабочего раствора пенообразователя, вместимостью 100 - 110 дм 3 ;

Секундомер с пределом измерений 60 мин и ценой деления 0,2 с;

5.4.2 Подготовка к испытанию

Условия проведения испытания:

Испытание проводят на открытом воздухе. Температура воздуха 10 °С - 22 °С. Скорость ветра вблизи противня не более 1,5 м/с. Перед каждым определением осуществляют контроль температуры н-гептана и рабочего раствора пенообразователя, которая должна составлять (17,5 ± 2,5) °С.

Готовят 100 дм 3 рабочего раствора испытуемого пенообразователя. Устанавливают противень на ровной поверхности земли. Тигель для повторного воспламенения устанавливают на расстоянии от 2,5 до 3,0 м от противня. Проверяют работоспособность насосной установки. Располагают ствол на таком расстоянии и с таким наклоном, чтобы пена попадала в центр очага под углом 45°.

5.4.3 Определение времени тушения н-гептана пеной низкой кратности

Заливают в противень (150 ± 5) дм 3 н-гептана без водяной подушки. В тигель для повторного воспламенения заливают 7 дм 3 н-гептана. Зажигают горючее в противне и тигле. Время свободного горения в противне (120 ± 5) с. Подают пену в центр противня в течение (120 ± 2) с, даже если тушение наступило раньше этого времени.

5.4.4 Определение времени повторного воспламенения

Через (60 ± 2) с после прекращения подачи пены в центре противня с потушенным горючим устанавливают горящий тигель для повторного воспламенения. Тигель опускают на дно противня. При опускании тигля необходимо следить, чтобы пена из противня не потушила горючее в тигле.

Фиксируют время с момента установки тигля в противень до момента, когда вся площадь противня будет охвачена пламенем.

Проводят три параллельных определения. При успешном тушении в первых двух определениях третье не проводят.

5.4.5 Обработка результатов

За результат испытания принимают среднеарифметическое результатов двух успешных параллельных определений времени тушения и времени повторного воспламенения. Допустимое расхождение между результатами испытаний с доверительной вероятностью 0,95 должно быть не более 20 % среднего значения. В случае получения отрицательного результата в двух определениях из трех при определении времени тушения или времени повторного воспламенения окончательный результат считают отрицательным.

Сущность метода заключается в определении времени тушения н-гептана пеной средней кратности при установленной интенсивности подачи рабочего раствора пенообразователя в лабораторных условиях.

5.5.1 Применяемое оборудование, средства измерений и растворы

Для определения времени тушения пеной средней кратности используют установку (см. рисунок ), в комплект которой входят:

Генератор пены, обеспечивающий получение пены средней кратности 80 ± 20 при рабочих объемных расходах раствора (2,0 ± 0,2) г/с и воздуха (160 ± 40) см 3 /с. Для изготовления пакета сеток генератора применяют сетку из нержавеющей стали со стороной ячейки в свету 0,9 мм и диаметром проволоки 0,2 мм;

Емкость с рабочим раствором пенообразователя, изготовленная из металла или полимерного материала, вместимостью не менее 5 дм 3 с горловиной и завинчивающейся крышкой;

Ротаметр газовый по ГОСТ 13045 , обеспечивающий контроль объемного расхода воздуха (160 ± 40) см 3 /с;

Ротаметр жидкостный по ГОСТ 13045 , обеспечивающий контроль объемного расхода рабочего раствора (2,0 ± 0,2) см 3 /с;

1 - генератор пены; 2, 9 - ротаметр; 3 - бачок; 4, 5, 7, 8 - кран; 6 - манометр;
10 - противень; 11 - ограждение; 12 - выдвижной держатель

Рисунок 6 - Схема установки для тушения пеной средней кратности
(стендовая методика)

Ограждение для горелки и генератора пены оборудуют окном для наблюдения за ходом тушения, входной дверью для замены противня и контроля генератора пены, выдвижным держателем для генератора пены.

5.5.2 Подготовка к испытанию

Условия проведения испытания: температура воздуха от 15 °С до 25 °С, давление от 84 до 106,7 кПа, относительная влажность воздуха от 40 % до 80 %.

Готовят 4 дм 3 рабочего раствора испытуемого пенообразователя температурой (20 ± 2) °С. Раствор заливают в бачок. Подают воздух и раствор в генератор пены. Через 5 - 10 с после начала подачи пены отбирают пробу в мерную емкость. Фиксируют время набора пены. Отбор пробы следует проводить таким образом, чтобы мерная емкость была заполнена равномерно по всему объему. Определяют массу пены взвешиванием мерной емкости до и после набора пены.

Расход раствора вычисляют делением массы пены на время заполнения сосуда, объемный расход воздуха - делением объема пены на время заполнения сосуда. Если расходы соответствуют установленным, то приступают к проведению испытания.

5.5.3 Проведение испытания

После проверки работы генератора пены в горелку заливают н-гептан слоем высотой (20 ± 1) мм. Гептан зажигают и выдерживают время свободного горения (180 ± 5) с. Во время свободного горения генератор пены должен находиться вне зоны пламени. Затем подают пену и вводят генератор пены в зону горения таким образом, чтобы пена подавалась в центр противня, поддерживая установленные расходы раствора и воздуха. Одновременно с вводом генератора пены включают секундомер.

Измеряют время с момента начала подачи пены в противень до момента прекращения горения.

Проводят три определения. При успешном тушении в первых двух определениях третье не проводят.

Повторное использование н-гептана недопустимо.

5.5.4 Обработка результатов

За результат испытания принимают среднеарифметическое результатов двух успешных параллельных определений.

Допустимое расхождение между результатами повторных определений с доверительной вероятностью 0,95 должно быть не более 15 % среднего значения.

Сущность метода заключается в определении времени тушения н-гептана в противне пеной средней кратности при установленной интенсивности подачи рабочего раствора и определении времени повторного воспламенения поверхности горючего от поднесенного к потушенному пеной модельному очагу горящего тигля.

5.6.1 Применяемое оборудование, средства измерений, реактивы и растворы

Для определения времени тушения н-гептана пеной средней кратности и времени повторного воспламенения используют установку (см. рисунок ), в комплект которой входят:

Ствол пожарный пены средней кратности с распылителем (см. рисунок ), обеспечивающим объемный расход раствора (0,055 ± 0,003) дм 3 /с при давлении на стволе 0,4 - 0,6 МПа;

1 - емкость с рабочим раствором пенообразователя; 2 - насос; 3 - трубопровод; 4 - рукав;
5 - манометр; 6 - пожарный ствол; 7 - противень; 8 - тигель

Рисунок 7 - Схема установки для тушения пеной средней кратности

1 - сетка; 2 - корпус; 3 - распылитель; 4 - манометр; 5 - кран; 6 - соединительная головка

Рисунок 8 - Пожарный ствол пены средней кратности

Приспособление для установки пожарного ствола пены средней кратности на край противня;

Противень круглый, изготовленный из стали низкой прочности, с внутренним диаметром (1480 ± 5) мм, высотой (150 ± 10) мм, толщиной стенки (2,50 ± 0,05) мм, площадью дна (1,72 ± 0,01) м 2 ;

Насос водяной, обеспечивающий объемный расход рабочего раствора пенообразователя (0,055 ± 0,003) дм 3 /с при давлении на стволе от 0,4 до 0,6 МПа;

Рукав напорный;

Емкость мерная вместимостью 100 - 110 дм 3 для приготовления рабочего раствора пенообразователя;

5.6.2 Подготовка к испытанию

Условия проведения испытания

Испытание проводят на открытом воздухе. Температура воздуха - от 10 °С до 22 °С, скорость ветра вблизи противня - не более 2 м/с. Перед каждым определением осуществляют контроль температуры н-гептана и рабочего раствора пенообразователя, которая должна составлять (17,5 ± 2,5) °С.

Готовят 100 дм 3 рабочего раствора испытуемого пенообразователя. Устанавливают противень на ровной поверхности земли. Заливают в противень (30 ± 1) дм 3 воды и (55 ± 1) дм 3 н-гептана. Ствол пены средней кратности устанавливают горизонтально непосредственно на краю противня с подветренной стороны. Тигель для повторного воспламенения устанавливают на расстоянии 2,5 - 3 м от противня и заливают в него (1,0 ± 0,1) дм 3 горючего. Проверяют работоспособность установки.

5.6.3 Определение времени тушения н-гептана пеной средней кратности

В противне и тигле зажигают горючее. Время свободного горения составляет (60 ± 5) с. На время свободного горения ствол выносят из зоны пламени. Включают насос и устанавливают ствол на краю противня. При испытаниях пенообразователей типов S/AR, AFFF/AR, FP/AR, FFFP/AR, AFFF, AFFF/AR-LV, FP, FFFP пену подают в течение (120 ± 5) с, даже если тушение наступило раньше этого времени. При испытаниях пенообразователей типа S подачу пены продолжают в течение (300 ± 5) с, даже если тушение наступило раньше этого времени.

Фиксируют время с момента начала подачи пены до момента прекращения горения.

Проводят три параллельных определения. При успешном тушении в первых двух определениях третье не проводят.

5.6.4 Определение времени повторного воспламенения

После прекращения подачи пены средней кратности с внешней стороны противня с потушенным горючим крепят горящий тигель для повторного воспламенения.

Фиксируют время с момента установки тигля до момента, когда вся площадь противня будет охвачена пламенем.

Проводят три параллельных определения. При успешном тушении в первых двух определениях третье не проводят.

5.6.5 Обработка результатов

За результат испытания времени тушения и времени повторного воспламенения принимают среднеарифметическое результатов двух успешных параллельных определений. Допустимое расхождение между результатами определений с доверительной вероятностью 0,95 должно быть не более 20 % среднего значения. В случае получения отрицательного результата в двух определениях из трех при определении времени тушения или времени повторного воспламенения результат испытания считают отрицательным.

Сущность метода заключается в определении времени тушения н-гептана в противне пеной высокой кратности при установленной интенсивности подачи рабочего раствора.

5.7.1 Применяемое оборудование, средства измерений, реактивы и растворы:

Генератор пены высокой кратности (см. рисунок ), позволяющий обеспечить объемный расход раствора пенообразователя (0,102 ± 0,002) дм 3 /с при давлении на стволе (0,50 ± 0,01) МПа;

Насос водяной, обеспечивающий объемный расход 0,10 - 0,15 дм 3 /с при давлении на стволе (0,50 ± 0,01) МПа;

Противень круглый, изготовленный из стали низкой прочности, с внутренним диаметром (1480 ± 15) мм, высотой (150 ± 10) мм, толщиной стенки (2,50 ± 0,05) мм, площадью дна (1,72 ± 0,01) м 2 ;

Экран для сбора пены, изготовленный из сетки (диаметр проволоки из стали низкой прочности 0,4 - 2,0 мм, размер стороны ячейки в свету 1,0 - 8,0 мм), длиной (2000 ± 50) мм, высотой (1000 ± 50) мм и шириной (2000 ± 50) мм;

Рукав напорный;

Емкость мерная для приготовления рабочего раствора пенообразователя вместимостью 100 - 110 дм 3 ;

5.7.2 Подготовка к испытанию

Условия проведения испытания

Испытание проводят на открытом воздухе. Температура воздуха 10 °С - 22 °С, скорость ветра вблизи противня не более 2 м/с. Перед каждым определением осуществляют контроль температуры н-гептана и рабочего раствора пенообразователя, которая должна составлять (17,5 ± 2,5) °С.

Готовят 100 дм 3 рабочего раствора испытуемого пенообразователя. Устанавливают противень на ровной поверхности земли внутри экрана для сбора пены. Заливают в противень (30 ± 1) дм 3 воды и (55 ± 1) дм 3 н-гептана. Располагают генератор на расстоянии (7,5 ± 2,5) м от противня на тележке такой высоты, чтобы ось пеногенератора была на (0,65 ± 0,05) м выше поверхности земли (см. рисунок ). Проверяют работоспособность установки.

1 - генератор пены высокой кратности на передвижной платформе; 2 - высокократная пена;
3 - противень с горючим; 4 - экран для сбора пены

Рисунок 9 - Схема установки

5.7.3 Проведение испытания

Горючее в противне зажигают. Время свободного горения составляет (60 ± 5) с. Включают насос. Генератор пены высокой кратности подводят к противню на расстояние (1,0 ± 0,1) м. Подачу пены из генератора осуществляют в течение (120 ± 2) с, даже если тушение наступило раньше.

Фиксируют время с момента начала подачи пены до момента прекращения горения.

Проводят три параллельных определения. При успешном тушении в первых двух определениях третье не проводят.

5.7.4 Обработка результатов

За результат испытания принимают среднеарифметическое результатов двух успешных параллельных определений времени тушения. Допустимое расхождение между результатами параллельных определений с доверительной вероятностью 0,95 должно быть не более 20 % среднего значения. В случае получения отрицательного результата в двух определениях из трех результат испытания считают отрицательным.

Измерение поверхностного натяжения рабочего раствора пенообразователя или смачивателя и межфазного натяжения на границе рабочего раствора с н-гептаном проводят методом «отрыва кольца» (метод Де-Нуи).

5.8.1 Применяемые приборы, посуда, реактивы и растворы:

Тензиометр - экспериментальный прибор для измерения поверхностного и межфазного натяжения жидкостей с погрешностью не более 0,1 мН/м (см. рисунок ). Прибор должен в автоматическом режиме с помощью измерительного кольца определять значение поверхностного и межфазного натяжения по результатам не менее пяти определений. Прибор должен иметь защиту весовой системы от перегрузки, уровнемер для установки по горизонтали, защитный экран для предотвращения воздействия колебаний воздуха и датчик температуры образца. Горизонтальная платформа для удержания кюветы с образцом должна иметь возможность двигаться вверх и вниз для изменения вертикальной позиции образца;

1 - измерительное кольцо; 2 - плечо измерительного кольца; 3 - горизонтальная платформа тензиометра;
4 - рукоятка подъемного механизма столика; 5 - панель управления тензиометра;
6 - кювета с рабочим раствором; 7 - весовая система; 8 - защитный экран

Рисунок 10 - Схема тензиометра для определения поверхностного натяжения
рабочих растворов

Кольцо измерительное для тензиометра. Проволока кольца - круглая диаметром не менее 0,3 мм, нижняя часть кольца должна иметь одну плоскость без изгибов и шероховатостей. Кольцо должно быть сварено в непрерывный круг и удерживаться на двух параллельных плечах. Длина плечей измерительного кольца должна быть не менее 23 мм. Диаметр кольца не менее 19 мм. При размещении на приборе плоскость кольца должна быть параллельна плоскости поверхности рабочего раствора;

Кювета для водного раствора пенообразователя или смачивателя. Кювета представляет собой стеклянную емкость правильной цилиндрической формы диаметром не менее 64 мм;

Цилиндр мерный вместимостью 500 см 3 по ГОСТ 1770 для приготовления рабочего раствора пенообразователя или смачивателя;

Жидкость горючая - н-гептан по ГОСТ 25828 ;

5.8.2 Подготовка к испытанию

Кювета и кольцо должны быть очищены, промыты дистиллированной водой и высушены. Кольцо дополнительно обжигают на газовой горелке в течение 5 с и вывешивают на крючке весовой системы тензиометра.

Тензиометр должен быть помещен на стабильную основу, свободную от вибраций.

Готовят растворы пенообразователей или смачивателей рабочей концентрацией. Температура растворов и н-гептана должна составлять (20,0 ± 0,2) °С. Проводят настройку прибора.

На панели управления тензиометра устанавливают:

Метод определения - кольцо;

Данные о плотности раствора пенообразователя или смачивателя;

Значения скорости опускания платформы тензиометра 0,15 - 0,30 мм/с.

5.8.3 Проведение испытания

Условия проведения испытания: температура воздуха (20,0 ± 0,2) °С, давление 84 - 106,7 кПа, относительная влажность воздуха 40 % - 80 %.

Приготовленный рабочий раствор наливают в кювету. Высота столба жидкости в кювете должна составлять 15 - 20 мм. Кювету с рабочим раствором устанавливают на платформу тензиометра. Проверяют температуру раствора.

Рукояткой подъемного механизма или автоматически платформу тензиометра поднимают таким образом, чтобы измерительное кольцо погрузилось в раствор и находилось на 1 мм ниже поверхности раствора.

На панели управления тензиометра обнуляют весовую систему, а затем осуществляют запуск начала измерения поверхностного натяжения.

Измерения заканчиваются автоматически. На панели управления тензиометром определяется среднее значение поверхностного натяжения, рассчитанное по результатам не менее пяти параллельных измерений.

После проведения измерений поверхностного натяжения платформу тензиометра опускают, в кювету поверх рабочего раствора заливают н-гептан для определения межфазного натяжения. Высота столба раствора и н-гептана в кювете должна составлять 30 - 40 мм.

Рукояткой подъемного механизма или автоматически платформу тензиометра поднимают таким образом, чтобы измерительное кольцо погрузилось сначала в н-гептан, а затем в рабочий раствор и находилось на 1 мм ниже поверхности раствора.

На панели управления тензиометра указывают данные о разности плотностей раствора пенообразователя и н-гептана.

На панели управления тензиометра обнуляют весовую систему, а затем осуществляют запуск начала измерения межфазного натяжения.

Измерения заканчиваются автоматически. На панели управления тензиометром определяется среднее значение межфазного натяжения, рассчитанное по результатам не менее пяти параллельных измерений.

Сущность метода заключается в определении времени смачивания образца из хлопковой ткани раствором смачивателя или пенообразователя, используемого в качестве смачивателя. Измеряют время с момента полного погружения в испытуемый раствор образца до момента, когда образец начнет тонуть.

5.9.1 Применяемая аппаратура, материалы, растворы и посуда:

Образцы круглой формы из неотбеленной хлопковой ткани диаметром (30 ± 1) мм, выдержанные при относительной влажности воздуха 65 % в течение 3 сут. Поверхностная плотность ткани 494 г/м 2 , количество нитей на 1 см длины ткани должно составлять 11 шт.;

Приспособление зажимное для погружения образца из хлопковой ткани в рабочий раствор (см. рисунок ). Для изготовления приспособления используют нержавеющую металлическую проволоку диаметром 2 мм;

Стакан стеклянный цилиндрической формы, диаметром 95 мм и вместимостью 1000 см 3 ;

Цилиндры мерные по ГОСТ 1770 для приготовления растворов смачивателя объемом 2000 см 3 с ценой деления 20 см 3 в количестве 5 шт.;

Секундомер с пределом измерений 60 мин и ценой деления 0,2 с;

Вода питьевая или дистиллированная.

Рисунок 11 - Схема зажимного приспособления для погружения образца из
хлопковой ткани в рабочий раствор

5.9.2 Подготовка к испытанию

В зависимости от значения установленной рабочей объемной концентрации смачивателя в растворе определяют диапазон для пяти концентраций. Объемную долю смачивателя С п, %, вычисляют по формуле

где С раб - рабочая объемная концентрация смачивателя, %;

п - номер определения в исследуемом диапазоне 1 - 5.

Мерные цилиндры нумеруют от 1 до 5.

Зажим, стакан и мерные цилиндры тщательно промывают, обезжиривают смесью ацетона и этилового спирта в равном соотношении, ополаскивают дистиллированной водой и протирают фильтровальной бумагой.

Готовят пять водных растворов с установленными концентрациями смачивателя. В пятом цилиндре готовят раствор с наибольшей концентрацией смачивателя в количестве 2000 см 3 . В четвертый цилиндр заливают 1000 см 3 воды и 1000 см 3 раствора из пятого цилиндра. В третий цилиндр заливают 1000 см 3 воды и 1000 см 3 раствора из четвертого цилиндра. Таким образом, продолжают разбавление до минимальной концентрации, при этом концентрация смачивателя в каждом последующем цилиндре снижается вдвое. Количество приготовленного раствора составит 2000 см 3 в первом цилиндре и по 1000 см 3 - в цилиндрах со второго по пятый. Температура воды при приготовлении растворов должна составлять (28 ± 2) °С. После приготовления растворы охлаждают.

5.9.3 Проведение испытания

Условия проведения испытания: температура воздуха (20,0 ± 0,2) °С, давление 84 - 106,7 кПа, относительная влажность воздуха 60 % - 70 %.

Испытания начинают с наименьшей концентрации смачивателя.

В стакан наливают 700 см 3 раствора. Температура раствора должна составлять (20 ± 1) °С. Пену с поверхности раствора убирают фильтровальной бумагой. Образец из хлопчатобумажной ткани помещают в зажимы приспособления и вертикально полностью погружают в раствор. Опорные ручки устанавливают на край стакана, зажимы приспособления раскрывают (см. рисунок ). Во время проведения эксперимента каждые 10 с зажимы приспособления сжимают и раскрывают для установления вертикального положения образца, деформирующегося в растворе.

Рисунок 12 - Определение смачивающей способности при использовании
дистиллированной и питьевой воды

Измеряют время с момента погружения образца в рабочий раствор до момента, когда образец начинает свободно тонуть. Измеренное время является показателем смачивающей способности.

5.9.4 Обработка результатов

За результат испытания принимают среднеарифметическое двух параллельных определений показателя смачивающей способности для одной концентрации. Допустимое расхождение между результатами параллельных определений с доверительной вероятностью 0,95 должно быть не более 20 % среднего значения.

Строят логарифмическую зависимость показателя смачивающей способности от объемной концентрации смачивателя в растворе (см. рисунок ). Графическим способом определяют минимальную объемную концентрацию смачивателя в рабочем растворе, при которой значение показателя смачивающей способности составляет 45 с.

Результатом испытаний является определение соответствия рабочей объемной концентрации смачивателя и определение значения показателя смачивающей способности. Рабочая объемная концентрация смачивателя в растворе должна быть не менее концентрации, при которой значение показателя смачивающей способности составляет 45 с.

Рисунок 13 - Определение показателя смачивающей способности смачивателя

Сущность метода заключается в определении времени смачивания фильтра из хлопковой ткани раствором смачивателя. Измеряют время с момента налива испытуемого раствора в полый цилиндр устройства для определения показателя смачивающей способности до момента появления первой капли.

5.10.1 Применяемое оборудование, материалы, средства измерений, посуда и реактивы:

Фильтры из неотбеленной хлопковой ткани, вырезанные в виде круга диаметром (30 ± 1) мм, выдержанные при относительной влажности воздуха 65 % в течение 3 сут. Поверхностная плотность ткани 494 г/м 2 , количество нитей на 1 см длины ткани составляет 11 шт.;

Цилиндры мерные по ГОСТ 1770 для приготовления растворов смачивателя вместимостью 100 см 3 в количестве 5 шт.;

Мензурка вместимостью 50 см 3 по ГОСТ 1770 ;

Устройство для определения показателя смачивающей способности со штативом для крепления устройства (см. рисунок ). Устройство состоит из металлического полого цилиндра и металлического стока. Внутренний диаметр полого цилиндра должен составлять (25 ± 1) мм. Между полым цилиндром и стоком установлен фильтр из хлопковой ткани. Полый цилиндр и сток крепят друг к другу винтами;

Чашка стеклянная для сбора капель со стока;

Секундомер с пределом измерений 60 мин и ценой деления 0,2 с;

Вода морская или жесткая.

1 - полый цилиндр; 2 - винт; 3 - пластинка из хлопковой ткани: 4 - сток; 5 - чашка; 6 - штатив

Рисунок 14 - Устройство для определения показателя смачивающей способности

5.10.2 Подготовка к испытанию

Между полым цилиндром и стоком устройства устанавливают фильтр из хлопковой ткани. Полый цилиндр и сток крепят друг к другу винтами. Устройство для определения показателя смачивающей способности устанавливают на штатив. Под стоком устройства помещают чашку.

В зависимости от значения установленной рабочей объемной концентрации смачивателя в растворе определяют диапазон для пяти концентраций. Значения объемных концентраций смачивателя в исследуемом диапазоне рассчитывают по формуле ().

Мерные цилиндры нумеруют от 1 до 5. Готовят пять водных растворов с установленными концентрациями смачивателя. В пятом цилиндре готовят раствор с наибольшей концентрацией смачивателя в количестве 100 см 3 . В четвертый цилиндр заливают 50 см 3 воды и 50 см 3 раствора из пятого цилиндра. В третий цилиндр заливают 50 см 3 воды и 50 см 3 раствора из четвертого цилиндра. Таким образом, продолжают разбавление до минимальной концентрации, при этом концентрация смачивателя в каждом последующем цилиндре снижается вдвое. Количество приготовленного раствора составит 100 см 3 в первом цилиндре и по 50 см 3 - в цилиндрах со второго по пятый.

Температура воды при приготовлении растворов должна составлять (28 ± 2) °С.

5.10.3 Проведение испытания

Условия проведения испытания: температура воздуха (20 ± 1) °С, давление 84 - 106,7 кПа, относительная влажность воздуха 60 % - 70 %.

Испытание начинают с наименьшей концентрации смачивателя. В мензурку наливают 10 см 3 рабочего раствора. Температура раствора должна составлять (20 ± 1) °С. Раствор из мензурки выливают в полый цилиндр устройства. Раствор смачивает фильтр и проходит через него в сток. Время с момента налива раствора в полый цилиндр до момента появления первой капли является показателем смачивающей способности.

5.10.4 Обработка результатов

За результат испытания принимают среднеарифметическое значение двух параллельных определений показателя смачивающей способности для одной концентрации. Допустимое расхождение между результатами повторных испытаний с доверительной вероятностью 0,95 должно быть не более 20 % среднего значения.

Строят логарифмическую зависимость показателя смачивающей способности от концентрации смачивателя в растворе (см. рисунок ). Графическим способом определяют минимальную концентрацию смачивателя, при которой показатель смачивающей способности составляет значение, указанное в нормативном или техническом документе на конкретный пенообразователь или смачиватель.

Рабочая объемная концентрация смачивателя в растворе должна быть не менее концентрации, при которой показатель смачивающей способности составляет значение, указанное в нормативном или техническом документе на конкретный пенообразователь или смачиватель.

Рисунок 15 - Определение показателя смачивающей способности смачивателя
с рабочей объемной концентрацией 1 %

Библиография

Ключевые слова: пенообразователи, смачиватели, тушение пожаров, термины и определения, технические требования, методы испытаний

Общие сведения

Кратность пенообразователя (полученной воздушно-механической пены) в равной мере зависит как от физико-химических свойств исходного пеноконцентрата общего или целевого назначения, так и от технических особенностей генераторов пены , имеющих специфические конструктивные ограничения www.spena.ru Генерация пены, рабочий раствор пенообразователя, генераторы пены, кратность пены. .

Значение кратности пены К определяют по формуле:

K=V п / V p (1)

где V п - объем пены, равный объему мерной емкости, дм 3 ;
V p - объем использованного жидкого заряда огнетушителя, дм 3 ГОСТ Р 50588-2012 "Пенообразователи для тушения пожаров. Общие технические требования и методы испытаний" .

Классификация пен

В зависимости от величины кратности пены разделяют на четыре группы:
  • пеноэмульсии , К;
  • низкократные пены , 3 ;
  • пены средней кратности , 20 ;
  • пены высокой кратности , К > 200 Шароварников А.Ф., Шароварников С.А. Пенообразователи и пены для тушения пожаров. Состав, свойства, применение. М.: Пожнаука, 2005. - 335 с. .

" style="border: solid 1px #CCCCCC; display:inline-block; height:200px">


с помощью ручного пожарного ствола ОРТ-50

Получение пены низкой кратности
с помощью ручного пожарного ствола ОРТ-50

style="border: solid 1px #CCCCCC; display:inline-block; height:200px">

Получение пены высокой кратности с использованием

Получение пены высокой кратности с использованием
стационарных систем пожаротушения


Применение пены различной кратности www.pozhproekt.ru ОРТ-50 www.heatandcool.ru Тушение пожара с помощью пены: преимущества и особенности


Применение пен различной кратности

В практике тушения пожаров используются все четыре вида пены , которые получают различными способами и с помощью разных устройств:
  • пеноэмульсии - соударением свободных струй раствора, для тушения пожаров нефти в амбарах;
  • низкократные пены - в пеногенераторах, в которых эжектируемый воздух перемешивается с раствором пенообразователя ;
  • пена средней кратности - на металлических сетках эжекционных пеногенераторов;
  • пена высокой кратности - в генераторах с перфорированной поверхностью тонких металлических листов или на специальном оборудовании, в результате принудительного наддува воздуха в пеногенератор от вентилятора.
Воздушно-механические пены (ВМП) средней и высокой кратности:
  • хорошо проникают в помещения, свободно преодолевают повороты и подъемы;
  • заполняют объемы помещений. вытесняют нагретые до высокой температуры продукты сгорания (в том числе токсичные), снижают температуру в помещении в целом, а так же строительных конструкций и т.п.;
  • прекращают пламенное горение и локализуют тление веществ и материалов, с которыми соприкааются;
  • Создают условия для проникновения ствольщиков к очагам тления для дотушивания (при соответствующих мерах защиты органов дыхания и зрения от попадания пены) Теребнев В.В., Смирнов В.А., Семенов А.О., Пожаротушение. (Справочник), 2-е издание. – Екатеринбург: ООО «Издательство «Калан», 2012. – 472 с. .
Устойчивость пены к обезвоживанию во многом определяет ее изолирующее действие, которое выражается в снижении скорости поступления паров горючего в зону горения. Чем больше пена теряет жидкости, тем тоньше становятся пленки пены и тем меньше они препятствуют испарению горючего. Скорость синерезиса определяется эффективным диаметром пенных каналов, высотой слоя пены и подвижностью поверхности пенных каналов, высотой слоя пены и подвижностью поверхности пенных каналов. Если стенки каналов жесткие, то течение жидкости будет определяться вязкостью раствора, а при подвижных стенках будет происходить совместное движение раствора и поверхности канала, что заметно снижает устойчивость пены.

Подвижность стенок каналов определяется природой поверхностноактивных веществ, содержащихся в пенообразователе.

Предельное напряжение сдвига (прочность) адсорбционного слоя молекул вторичных алкилсульфатов натрия очень низко, поэтому в процессе обезвоживания пены поверхность каналов движется вместе с раствором. При добавлении к этому пенообразователю жирных спиртов, например тетрадецилового спирта, образуется композиция, которая обеспечивает высокую прочность адсорбционного слоя и придает неподвижность поверхности каналов, что резко снижает скорость течения жидкости и замедляет процесс синерезиса пены.

Пенообразователь, содержащий вторичные алкилсульфаты натрия и добавки высших жирных спиртов, называется «Сампо». В нем, наряду с указанными поверхностно-активными компонентами, содержатся вещества, предотвращающие расслоение системы при низких температурах и повышающие термическую устойчивость пены.

Пенообразователи представляют собой концентрированные водные растворы поверхностно-активных веществ, содержание которых обычно составляет 25 % масс.

Рабочие растворы, из которых непосредственно образуется пена в генераторах, содержат 3...6 % объема пенообразователя, т. е. 1...2 % масс, поверхностно-активного вещества.

Минимальное содержание молекул ПАВ в пенообразующем рабочем растворе определяется необходимостью обеспечить на вновь сформированной поверхности пенных пленок плотный монослой адсорбированных молекул пенообразователя.

Объемное пожаротушение (установки с генераторами пены высокой кратности) рекомендуется для тушения пожаров на складах, в ангарах и иных закрытых зданиях и помещениях производственного назначения. В СП 5.13130.2009 есть раздел «Установки пожаротушения высокократной пеной» с требованиями по проектированию систем такого типа. Однако ГОСТ на генераторы пены высокой кратности пока отсутствует, нет стандартной методики испытаний.

«Пожнефтехим», производитель генераторов пены «Фаворит» для объемного пожаротушения, делится опытом в области проектирования и внедрения установок для складов, ангаров и других объектов, для которых рекомендовано применение пены высокой кратности.

Установки объемного пожаротушения. Нормативная база
Технический регламент о требованиях пожарной безопасности (редакция, действующая с 31 июля 2018 года) предусматривает ликвидацию пожара автоматическими установками пожаротушения с помощью поверхностного и объемного способа подачи огнетушащего вещества. В ФЗ № 123 прописано, что тушение пожара объемным способом должно обеспечивать создание среды, не поддерживающей горение в защищаемом объеме объекта.

ГОСТ Р 50800-95 по автоматическим установкам пенного пожаротушения регламентирует разделение установок по кратности пены. Низкая кратность – от 5 до 20, средняя – от 20 до 200, высокая – свыше 200 . СП 5.13130 устанавливает формулы для расчета расхода раствора пенообразователя, количества генераторов пены высокой кратности, количества воды и пенообразователя.

Согласно СП 155.13130.2014 «Склады нефти и нефтепродуктов», пена высокой кратности может предусматриваться для закрытых зданий и помещений, связанных с обращением ЛВЖ и ГЖ . Тушение пеной низкой или средней кратности здесь допускается при невозможности применения высокократной пены.

ООО «Пожнефтехим». Пример типового проектного решения для склада
площадью 900 м 2 и высотой защищаемого объема менее 10 м.

Генератор пены высокой кратности «Фаворит»: характеристики

Генератор пены высокой кратности – основной элемент установки объемного пожаротушения. Его характеристики и качество изготовления влияет на эффективность установки пожаротушения в целом. «Пожнефтехим», российский производитель пожарного оборудования и пенообразователей, производит ГВПЭ с 2008 года, уже около 10 лет. Изделие производится по ТУ 4854-020-72410778-08. Методика испытаний разработана специалистами «Пожнефтехим» и дает возможность проверить кратность пены с учетом высоты защищаемого помещения.

В России генераторы пены высокой кратности применяются с начала 2000-х годов. По нашим оценкам, объемное пожаротушение набирает популярность. На отечественном рынке представлены импортные и российские пеногенераторы. Импортные генераторы испытываются с заполнением объема высотой 6 метров и дают значение кратности не менее 400. Производители российских пеногенераторов декларируют кратность от 400 до 1000, при этом не указывается метод испытаний. Рекомендуемая кратность пены, полученной на генераторах пены высокой кратности, составляет от 400 до 800, в зависимости от конструктивных особенностей устройства (письмо ВНИИПО МЧС в ответ на запрос ООО «Пожнефтехим» о кратности пены, 12.09.2013). В СП 5.13130 при расчете установок пенного пожаротушения используются коэффициенты, учитывающие усадку пены: 1,2 — до высоты 4 м, 1,5 — до высоты 10 м, свыше 10 м — экспериментально.

Далее представлены технические характеристики генератора пены высокой кратности «Фаворит» производства «Пожнефтехим».

Примечание
* ГВПЭ «Фаворит» могут быть изготовлены с любым значением номинального расхода в диапазоне 50-1000 л/мин при номинальном давлении 0,5 – 1,0 МПа.
** В зависимости от методики испытаний и качества пенообразователя.

Применение генераторов пены для объемного пожаротушения
Согласно нормативным документам, генераторы высокократной пены применяются в установках объемного пожаротушения и установках локального пожаротушения по объему. СП 5.13130.2009 предусматривает подачу пены высокой кратности генераторами двух типов: эжекционного (для стационарных установок пожаротушения) и вентиляционного (для мобильной пожарной техники). Стационарный генератор пены «Фаворит» относится к типу эжекционных устройств. Область применения:

  • самолетные ангары (строения для самолетов и вертолетов);
  • продуктовые насосные нефтеперекачивающие станции на нефтегазовых предприятиях;
  • закрытые здания, помещения и сооружения, связанные с обращением нефти, нефтепродуктов, ЛВЖ и ГЖ;
  • склады, складские здания и помещения в химической, легкой, пищевой, деревообрабатывающей промышленности, а также лакокрасочных, горюче-смазочных, строительных материалов.

«Пожнефтехим» применяет методику испытаний генераторов пены высокой кратности «Фаворит» с заполнением емкости на соответствующую высоту на время. Испытания проводятся на специальном стенде. На заводских испытаниях «Пожнефтехим» 26 апреля 2018 года с использованием пенообразователя «Аквафом» типа S ГВПЭ «Фаворит» продемонстрировал кратность 540 при высоте заполнения 12 метров.

Курсы повышения квалификации по пожарной безопасности и системам пожаротушения. 2018
Донской, Тульская область. Демонстрация работы ГВПЭ «Фаворит». Обучение проводится ООО «Пожнефтехим» по Лицензии Министерства образования Тульской области
№0133/03315 от 30.09.2016

Пенообразователи для объемного пожаротушения. Сочетаемость с генераторами пены
Определение характеристик установки пожаротушения выполняются в каждом случае индивидуально, в зависимости от пожарной нагрузки и пожарной опасности объекта. Эти же факторы влияют на выбор огнетушащего вещества в установках пожаротушения. Требования к качеству пенообразователей и смачивателей регламентированы в ГОСТ Р 50588-2012 «Пенообразователи для тушения пожаров. Общие технические требования и методы испытаний».

По мнению специалистов ВНИИПО МЧС России, «опыт тушения пеной высокой кратности пожаров класса А и В показывает, что фторсодержащие и синтетические пенообразователи обладают практически одинаковой эффективностью (кроме складов с полярными горючими жидкостями» (ответ на запрос, письмо ООО «Пожнефтехим» о пене высокой кратности от 07.04.2014).

Тушение пеной высокой кратности проводится для всех типов пенообразователей, кроме смачивателя WA. Пенообразователь, используемый для установок тушения пеной высокой кратности, должен быть способен образовывать пену высокой кратности. На выбор влияет экономическая целесообразность. По этой причине для объемного пожаротушения чаще применяется пенообразователь типа S. Пожнефтехим производит для таких систем синтетический углеводородный биоразлагаемый пенообразователь «Аквафом» с объемной концентрацией в рабочем растворе 1%, 3% ли 6% и температурами застывания в диапазоне от не выше минус 3 ᵒС до не выше минус 50 ᵒС по ГОСТ 18995.5.

Синтетический пенообразователь для пожаротушения «Аквафом» производства Пожнефтехим применяется для приготовления рабочих растворов с питьевой и жесткой водой, а также может применяться с морской водой. Модификация «Аквафом М» – пенообразователь целевого назначения с объемной концентрацией в рабочем растворе 3% и 6%. Он обладает повышенной огнетушащей способностью и рекомендован для оснащения пожарно-спасательных подразделений и установок пожаротушения на объектах с обращением и хранением ЛВЖ и ГЖ.

В установках объемного пожаротушения может применяться пленкообразующий пенообразователь типа AFFF и AFFF/AR, однако основное свойство этих пенообразователей – пленкообразование - не реализуется при данном типе тушения. Фторсодержащие пенообразователи востребованы в системах, где требуется тушение ЛВЖ и ГЖ пеной низкой и средней кратности.

Применение синтетического пенообразователя типа S/AR наоборот эффективно и целесообразно. Пенообразователь «Аквафом» S/AR производства Пожнефтехим рекомендуется для тушения полярных жидкостей (этиловый спирт, метиловый спирт, ацетон, ацетонитрил, бутилацетат, гидразингидрат, дециловый спирт, диэтиловый спирт, масляный альдегид, метиловый спирт, метилацетат, метил-трет-бутиловый эфир, муравьиная кислота, пропионовая кислота, уксусная кислота, этилкарбитол и др.). Пенообразователь S/AR эффективен при тушении нефтепродуктов, стабильных газоконденсатов и высокооктановых топлив с содержанием полярных добавок.

«Пенообразователь S/AR рекомендован для установок объемного пожаротушения. Пена S/AR необыкновенно устойчивая. Наличие полимерных добавок придает этому пенообразователю дополнительные преимущества при тушении полярных жидкостей. К тому же «Аквафом» S/AR производства Пожнефтехим полностью биоразлагаемый и экологически безопасный синтетический пенообразователь. Исследования «Испытательного центра поверхностно-активных веществ, моющих средств и лакокрасочных материалов» подтверждают, что пенообразователи «Аквафом S/AR» обладают 100% биоразлагаемостью и биоассимилируются в течение семи суток», - отмечает Татьяна Потапенко, руководитель проекта производства пенообразователей Пожнефтехим.

В линейке пожарной продукции Пожнефтехим более 180 рецептур пенообразователей «Аквафом». Компания производит пенообразователи для пожаротушения с 2011 года. Собственный опыт разработки рецептур и огневые испытания с полярными и неполярными жидкостями на полигоне дают возможность рекомендовать комплексные системы пожаротушения для каждого конкретного объекта, с учетом вида горючего, качества воды и пожарной нагрузки.

Пример расположения оборудования для установки пожаротушения
высокостеллажного склада (объемное пожаротушение пеной высокой кратности)

Объемное пожаротушение для складов и производственных цехов

Пожнефтехим, российский производитель пожарного оборудования и пенообразователей, проектирует и внедряет установки пенного пожаротушения на складах разных отраслей промышленности. Установки тушения пожара воздушно-механической пеной и водой со смачивателем рекомендованы к применению в складских помещениях с хранением легковоспламеняющихся, горючих и трудосмачиваемых материалов, жидкостей и веществ. Это следующие отрасли промышленности:

  • Нефтедобывающая промышленность, добыча природного газа
  • Нефтеперерабатывающая промышленность, переработка природного и попутного нефтяного газа
  • Угольная промышленность, добыча угля
  • Коксохимическая промышленность
  • Химическая и нефтехимическая промышленность
  • Азотная промышленность
  • Промышленность синтетических смол и пластических масс
  • Промышленность пластмассовых изделий, стекловолокнистых материалов, стеклопластиков
  • Производство пленок, труб и листов из полимерных материалов
  • Лакокрасочная промышленность
  • Промышленность синтетических красителей
  • Производство синтетического каучука
  • Производство резинотехнических изделий
  • Шинная промышленность
  • Лесная, деревообрабатывающая и целлюлозно-бумажная промышленность
  • Производство строительных деталей из древесины и плит на древесной основе
  • Промышленность мягких кровельных и гидроизоляционных материалов
  • Лесохимическая промышленность
  • Производство целлюлозы, древесной массы, бумаги и картона
  • Мебельная промышленность
  • Масложировая промышленность
  • Спиртовая, ликероводочная промышленность
  • Магистральный нефтепроводный, нефтепродуктопроводный, газопроводный транспорт

Пена – это скопление пузырьков, которое способствует , главным образом, за счет эффекта поверхностного тушения. Пузырьки возникают при смешивании воды с пенообразователем. Пена легче самого легкого воспламеняющегося нефтепродукта, поэтому при подаче на горящий нефтепродукт она остается на его поверхности.

Дополнительно читаете еще один


Виды пены по кратности:

  • пены низкой кратности – кратность пены от 4 до 20 (получают стволами СВП, пеносливными устройствами);
  • пены средней кратности – кратность пены от 21 до 200 (получают генераторами ГПС);
  • пены высокой кратности – кратность пены более 200 (получают путем принудительного нагнетания воздуха).

Область применения. Достоинства и недостатки

Пена широко применяется для тушения пожаров твердых (пожары класса А) жидких веществ (пожары класса В), не вступающих во взаимодействие с водой, и в первую очередь – для тушения пожаров нефтепродуктов.

Химическая пена о бразуется смешиванием щелочи (обычно бикарбоната натрия) с кислотой (как правило, сульфата алюминия) в воде. Эти вещества содержатся в одном герметичном контейнере. Чтобы сделать пену более прочной и продлить срок ее службы, к ней добавляется стабилизатор.

При взаимодействии указанных химических веществ образуются пузырьки, наполненные углекислым газом, который в данном случае практически не обладает никакой огнетушащей способностью; его назначение – заставить пузырьки всплывать.

Порошок может храниться в емкостях и вводиться в воду в процессе борьбы с пожаром через специальную воронку или каждое из двух химических веществ может быть предварительно перемешано с водой, в результате чего образуется раствор сульфата алюминия и раствор бикарбоната натрия.

Эта пена образуется из пенного раствора, получаемого при смешивании пенообразователя с водой. Пузырьки возникают при турбулентном перемешивании воздуха с пенным раствором. Как следует из самого названия пены, ее пузырьки заполнены воздухом. Качество пены зависит от степени перемешивания, а также от исполнения и эффективности используемого оборудования, а ее количество – от конструкции этого оборудования.

Существует несколько типов воздушно-механической пены, одинаковых по природе, но имеющих разную огнетушащую эффективность. Ее пенообразователи производят на основе протеина и поверхностно-активных веществ. Поверхностно-активные вещества – это большая группа веществ, включающая моющие средства, смачиватели и жидкое мыло.

Ограничения в применении пены

При правильном использовании пена – эффективное огнетушащее вещество. Тем не менее существуют определенные ограничения в ее применении, которые перечислены далее.

  1. Поскольку пена представляет собой водный раствор, она проводит электричество, поэтому ее нельзя подавать на электрооборудование, находящееся под напряжением.
  2. Пену, так же как и воду, нельзя применять для тушения горючих металлов.
  3. Многие типы пены нельзя употреблять с огнетушащими порошками. Исключение из этого правила составляет «легкая вода», которая может использоваться с огнетушащим порошком
  4. Пена не годится для тушения пожаров, связанных с горением газов и криогенных жидкостей. Но высоко-кратная пена применяется при тушении растекающихся криогенных жидкостей для быстрого подогрева паров и уменьшения опасности, сопутствующих такому растеканию

  1. Несмотря на существующие ограничения в применении, пена очень эффективна при борьбе .
  2. Пена - очень эффективное огнетушащее вещество, которое, кроме того, обладает и охлаждающим эффектом.
  3. Пена создает паровой барьер, препятствующий выходу воспла­меняющихся паров наружу. Поверхность цистерны может быть покрыта пеной для защиты ее от пожара в соседней цистерне.

4. Пена может быть использована для тушения пожаров класса А в связи с наличием в ней воды. Особенно эффективна «легкая вода».

5. Пена – эффективное огнетушащее вещество для покрытия расте­кающихся нефтепродуктов. Если нефтепродукт вытекает, нужно попытаться закрыть клапан и таким образом прервать поток. Если это невозможно сделать, надо преградить путь потоку при помощи пены, которую следует подавать в район пожара для его тушения и затем для создания защитного слоя, покрывающего просачивающуюся жидкость.

6. Пена – наиболее эффективное огнетушащее вещество для тушения пожаров в больших емкостях с .

7. Для получения пены может использоваться пресная или жесткая или мягкая вода.

Отдельного внимания заслуживает и компрессионная пена, которая очень хорошо себя зарекомендовала при тушении пожаров.

Компрессионная пена (compressed air foam system, CAFS) – технология, используемая в пожаротушении для доставки огнетушащей пены с целью тушения возгорания или защиты зоны, где отсутствует горение, от воспламенения.

Компрессионная пена получается из стандартной насосной установки, которая имеет точку ввода сжатого воздуха в пенообразователь для формирования пены. Кроме того, сжатый воздух также добавляет энергию в струю, которая позволяет увеличить дальность доставки ОТВ по сравнению со стандартными пеногенераторами или стволами.

При использовании компрессионной пены, эффективность огнетушащего вещества составляет порядка 80%. Такой показатель возможен благодаря особым физическим свойствам компрессионной пены, а именно адгезивности. При тушении пожара, ствольщик получает в свой арсенал новые возможности. При нанесении на потолок и стены, пена изолирует смежные помещения от воздействия высоких температур, при этом пена долго держится даже на вертикальных поверхностях: от одного часа на металлической до двух-трех часов на деревянной. Каждый пузырь компрессионной пены имеет стойкую связь с соседними, что обуславливает высокую стойкость пены. В результате получается тонкое (около 1-2 сантиметров) и прочное «одеяло», которое буквально «укрывает» горящую поверхность, прекращая доступ кислорода в очаг возгорания.

Готовая компрессионная пена подаётся по напорным пожарным рукавам диаметром 38 или 51 мм под рабочим давлением 7 ÷ 10 кгс/см 2 .

Физические параметры компрессионной пены и, соответственно, огнетушащие свойства пены – изменяются посредством изменения соотношения ингредиентов. Может вырабатываться «сырая» (тяжёлая) пена с соотношением от 1: 5 (вода: воздух) и «сухая» (лёгкая) пена с соотношением до 1: 20 (вода: воздух).

Подача компрессионной пены с соотношением 1: 10 (вода: воздух) на вертикальные поверхности

(металлическую дверь, кирпичную стену).

Вместе с тем, пена обладает и лучшими свойствами воды – она охлаждает очаг, а благодаря смачивателям, включенным в ее состав – проникает в поры и трещины поверхности, предотвращая тление материала и его повторное возгорание.

Главные преимущества компрессионной пены: быстрый сбив пламени и снижение температуры, сокращение времени тушения в 5 ÷ 7 раз (на 500 ÷ 700 % !!!), снижение расхода воды в 5 ÷ 15 раз (на 500 ÷ 1500 %).

Пенобразователи

Пенообразователь (пенный концентрат) -концентрированный водный раствор стабилизатора пены (поверхностно-активного вещества), образующий при смешивании с водой рабочий раствор пенообразователя.

Пенообразователи предназначены для получения с помощью пожарной техники воздушно-механической пены или растворов смачивателей, используемых для тушения пожаров классов А (горение твердых веществ) и В (горение жидких веществ).

Пенообразователи в зависимости от химического состава (поверхностно-активной основы) подразделяются на:

  • синтетические (с),
  • фторсинтетические (фс ),
  • протеиновые (п),
  • фторпротеиновые (фп ).

Пенообразователи в зависимости от способности образовывать огнетушащую пену на стандартном пожарном оборудовании подразделяются на:

Самыми популярными и недорогими, и в то же время эффективными, на сегодняшний день считаются пенообразователи с маркировкой ПО-6 и ПО-3. Цифры на маркировке говорят об уровне концентрации пенообразователя в рабочем растворе (6 или 3 литра на определенный объем воды). Хранить такую продукцию следует в отапливаемых помещениях. Замерзая, пенообразователь не теряет своих свойств и вновь готов к эксплуатации после размораживания, но в условиях возникшего пожара времени на приведение его в нужную консистенцию может просто не быть. Оба вида относятся к числу биоразлагаемых и абсолютно безопасны при хранении и транспортировке.

ХАРАКТЕРИСТИКА НАИБОЛЕЕ РАСПРОСТРАНЁННЫХ ПЕНООБРАЗОВАТЕЛЕЙ

ПО-6НП – синтетический, биологически разлагаем. Предназначен для тушения пожаров нефтепродуктов, ГЖ, для применения с морской водой. «Морпен» – синтетический, биологически разлагаем. Предназначен для получения огнетушащей пены низкой, средней и высокой кратности с использованием как пресной, так и морской воды.

ПО-1 Водный раствор нейтрализованного керосинового кон­такта 84±3%, костный клей для стойкости пены 5 ± 1 % синтетический этиловый спирт или концентрированный этиленгликоль 11 ± 1 %. Температура замерзания не пре­вышает -8 °С. Является основным пенообразующим средством для получения воздушно-механической пены любой кратности.

При тушении нефтей и нефтепродуктов концентрация водного раствора ПО-1 принимается 6%. При тушении других веществ и материалов используют растворы с концентрацией 2 – 6 %.

ПО-3А Водный раствор смеси натриевых солей вторичных ал­килсульфатов. Содержит 26±1 % активного вещества. Температура замерзания не выше – 3°С. При примене­нии разбавляют водой в пропорции 1: 1 с использо­ванием дозирующей аппаратуры, рассчитанной на пено­образователь ПО-1. Для получения пены применяют водный раствор с концентрацией 4 – 6 %.
ПО-6К Изготовляют из кислого гудрона при сульфировании гидроочищенного керосина. Содержит 32 % активного вещества. Температура замерзания не выше -3°С. Для получения пены при тушении нефтепродуктов используют водный раствор с концентрацией 6 %. В других случаях концентрация водного раствора может быть меньше.
«Сампо» Состоит из синтетического поверхностно-активного вещества (20%), стабилизатора (15%), антифризной добавки (10%) и вещества, снижающего коррозионное действие состава (0,1 %). Температура застывания – 10°С. Для получения пены используют водный раствор с концентрацией 6 %. Применяют при тушении нефти, неполярных нефтепродуктов, резинотехнических изделий древесины, волокнистых материалов, в стационарны системах пожаротушения и для защиты технологических установок.