Найти наименьшее значение функции f х х. Решаем задачи B14 из ЕГЭ. Достаточное условие экстремума функции одной переменной

С помощью данного сервиса можно найти наибольшее и наименьшее значение функции одной переменной f(x) с оформлением решения в Word . Если же задана функция f(x,y) , следовательно, необходимо найти экстремум функции двух переменных . Также можно найти интервалы возрастания и убывания функции .

Правила ввода функций :

Необходимое условие экстремума функции одной переменной Уравнение f" 0 (x *) = 0 - это необходимое условие экстремума функции одной переменной, т.е. в точке x * первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки x с, в которых функция не возрастает и не убывает. Достаточное условие экстремума функции одной переменной Пусть f 0 (x) дважды дифференцируемая по x , принадлежащему множеству D . Если в точке x * выполняется условие:

F" 0 (x *) = 0
f"" 0 (x *) > 0

То точка x * является точкой локального (глобального) минимума функции.

Если в точке x * выполняется условие:

F" 0 (x *) = 0
f"" 0 (x *) < 0

То точка x * - локальный (глобальный) максимум.

Пример №1 . Найти наибольшее и наименьшее значения функции: на отрезке .
Решение.

Критическая точка одна x 1 = 2 (f’(x)=0). Эта точка принадлежит отрезку . (Точка x=0 не является критической, так как 0∉).
Вычисляем значения функции на концах отрезка и в критической точке.
f(1)=9, f(2)= 5 / 2 , f(3)=3 8 / 81
Ответ: f min = 5 / 2 при x=2; f max =9 при x=1

Пример №2 . С помощью производных высших порядков найти экстремум функции y=x-2sin(x) .
Решение.
Находим производную функции: y’=1-2cos(x) . Найдем критические точки: 1-cos(x)=2, cos(x)=½, x=± π / 3 +2πk, k∈Z. Находим y’’=2sin(x), вычисляем , значит x= π / 3 +2πk, k∈Z – точки минимума функции; , значит x=- π / 3 +2πk, k∈Z – точки максимума функции.

Пример №3 . Исследовать на экстремум фцнкцию в окрестностях точки x=0.
Решение. Здесь необходимо найти экстремумы функции. Если экстремум x=0 , то выяснить его тип (минимум или максимум). Если среди найденных точек нет x = 0, то вычислить значение функции f(x=0).
Следует обратить внимание, что когда производная с каждой стороны от данной точки не меняет своего знака, не исчерпываются возможные ситуации даже для дифференцируемых функций: может случиться, что для сколь угодно малой окрестности по одну из сторон от точки x 0 или по обе стороны производная меняет знак. В этих точках приходится применять другие методы для исследования функций на экстремум.

Пример №4 . Разбить число 49 на два слагаемых, произведение которых будет наибольшим.
Решение. Обозначим x - первое слагаемое. Тогда (49-x) - второе слагаемое.
Произведение будет максимальным: x·(49-x) → max

Понятие наибольшего и наименьшего значений функции.

Понятие набольшего и наименьшего значений тесно связано с понятием критической точки функции.

Определение 1

$x_0$ называется критической точкой функции $f(x)$, если:

1) $x_0$ - внутренняя точка области определения;

2) $f"\left(x_0\right)=0$ или не существует.

Введем теперь определения наибольшего и наименьшего значения функции.

Определение 2

Функция $y=f(x)$, определенная на промежутке $X$, достигает своего наибольшего значения, если существует точка $x_0\in X$, такая, что для всех $x\in X$ выполняется неравенство

Определение 3

Функция $y=f(x)$, определенная на промежутке $X$, достигает своего наименьшего значения, если существует точка $x_0\in X$, такая, что для всех $x\in X$ выполняется неравенство

Теорема Вейерштрасса о непрерывной на отрезке функции

Введем для начала понятие непрерывной на отрезке функции:

Определение 4

Функция $f\left(x\right)$ называется непрерывной на отрезке $$, если она непрерывна в каждой точке интервала $(a,b)$, а также непрерывна справа в точке $x=a$ и слева в точке $x=b$.

Сформулируем теорему о непрерывной на отрезке функции.

Теорема 1

Теорема Вейерштрасса

Непрерывная на отрезке $$ функция $f\left(x\right)$ достигает на этом отрезке своего наибольшего и наименьшего значения, то есть существуют точки $\alpha ,\beta \in $ такие, что для всех $x\in $ выполняется неравенство $f(\alpha)\le f(x)\le f(\beta)$.

Геометрическая интерпретация теоремы изображена на рисунке 1.

Здесь функция $f(x)$ достигает своего наименьшего значения в точке $x=\alpha $ достигает своего наибольшего значения в точке $x=\beta $.

Схема нахождения наибольшего и наименьшего значений функции $f(x)$ на отрезке $$

1) Найти производную $f"(x)$;

2) Найти точки, в которых производная $f"\left(x\right)=0$;

3) Найти точки, в которых производная $f"(x)$ не существует;

4) Выбрать из полученных в пунктах 2 и 3 точек те, которые принадлежат отрезку $$;

5) Вычислить значение функции в точках, полученных в пункте 4, а также на концах отрезка $$;

6) Выбрать из полученных значений наибольшее и наименьшее значение.

Задачи на нахождение наибольшего и наименьшего значений функции на отрезке

Пример 1

Найти наибольшее и наименьшее значение функции на отрезке : $f(x)={2x}^3-15x^2+36x+1$

Решение.

1) $f"\left(x\right)=6x^2-30x+36$;

2) $f"\left(x\right)=0$;

\ \ \

4) $2\in \left,\ 3\in $;

5) Значения:

\ \ \ \

6) Наибольшее из найденных значений - $33$, наименьшее из найденных значений - $1$. Таким образом, получим:

Ответ: $max=33,\ min=1$.

Пример 2

Найти наибольшее и наименьшее значение функции на отрезке : $f\left(x\right)=x^3-3x^2-45x+225$

Решение.

Решение будем проводить по выше данной схеме.

1) $f"\left(x\right)=3x^2-6x-45$;

2) $f"\left(x\right)=0$;

\ \ \

3) $f"(x)$ существует во всех точках области определения;

4) $-3\notin \left,\ 5\in $;

5) Значения:

\ \ \

6) Наибольшее из найденных значений - $225$, наименьшее из найденных значений - $50$. Таким образом, получим:

Ответ: $max=225,\ min=50$.

Пример 3

Найти наибольшее и наименьшее значение функции на отрезке [-2,2]: $f\left(x\right)=\frac{x^2-6x+9}{x-1}$

Решение.

Решение будем проводить по выше данной схеме.

1) $f"\left(x\right)=\frac{\left(2x-6\right)\left(x-1\right)-(x^2-6x+9)}{{(x-1)}^2}=\frac{x^2-2x-3}{{(x-1)}^2}$;

2) $f"\left(x\right)=0$;

\[\frac{x^2-2x-3}{{(x-1)}^2}=0\] \ \

3) $f"(x)$ не существует в точке $x=1$

4) $3\notin \left[-2,2\right],\ -1\in \left[-2,2\right],\ 1\in \left[-2,2\right]$, однако 1 не принадлежит области определения;

5) Значения:

\ \ \

6) Наибольшее из найденных значений - $1$, наименьшее из найденных значений - $-8\frac{1}{3}$. Таким образом, получим: \end{enumerate}

Ответ: $max=1,\ min==-8\frac{1}{3}$.

Пусть функция у = f (х) непрерывна на отрезке [a, b ]. Как известно, такая функция на этом отрезке достигает наибольшего и наименьшего значений. Эти значения функция может принять либо во внутренней точке отрезка [a, b ], либо на границе отрезка.

Для нахождения наибольшего и наименьшего значений функции на отрезке [a, b ] необходимо:

1)найти критические точки функции в интервале (a, b );

2)вычислить значения функции в найденных критических точках;

3) вычислить значения функции на концах отрезка, то есть при x = а и х = b ;

4)из всех вычисленных значений функции выбрать наибольшее и наименьшее.

Пример. Найти наибольшее и наименьшее значения функции

на отрезке .

Находим критические точки:

Эти точки лежат внутри отрезка ; y (1) = ‒ 3; y (2) = ‒ 4; y (0) = ‒ 8; y (3) = 1;

в точке x = 3 и в точкеx = 0.

Исследование функции на выпуклость и точку перегиба.

Функция y = f (x ) называется выпуклойвверх на промежутке (a , b ) , если ее график лежит под касательной, проведенной в любой точке этого промежутка, и называется выпуклой вниз (вогнутой) , если ее график лежит над касательной.

Точка, при переходе через которую выпуклость сменяется вогнутостью или наоборот, называется точкой перегиба .

Алгоритм исследования на выпуклость и точку перегиба:

1. Найдеми критические точки второго рода, то есть точки в которых вторая производная равна нулю или не существует.

2. Нанести критические точки на числовую прямую, разбивая ее на промежутки. Найти знак второй производной на каждом промежутке; если , то функция выпуклая вверх, если, то функция выпуклая вниз.

3. Если при переходе через критическую точку второго рода поменяет знак и в этой точке вторая производная равна нулю, то эта точка ‒ абсцисса точки перегиба. Найти ее ординату.

Асимптоты графика функции. Исследование функции на асимптоты.

Определение. Асимптотой графика функции называется прямая , обладающая тем свойством, что расстояние от любой точки графика до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.

Существуют три вида асимптот: вертикальные, горизонтальные и наклонные.

Определение. Прямая называетсявертикальной асимптотой графика функции у = f (х) , если хотя бы один из односторонних пределов функции в этой точке равен бесконечности, то есть

где ‒ точка разрыва функции, то естьне принадлежит области определения.

Пример.

D (y ) = (‒ ∞; 2) (2; + ∞)

x = 2 ‒ точка разрыва.

Определение. Прямая у = A называется горизонтальной асимптотой графика функции у = f(х) при , если

Пример.

x

y

Определение. Прямая у = k х + b (k ≠ 0) называется наклонной асимптотой графика функции у = f (х) при , где

Общая схема исследования функций и построения графиков.

Алгоритм исследования функции у = f (х) :

1. Найти область определения функцииD (y ).

2. Найти (если это можно) точки пересечения графика с осями координат (при x = 0 и при y = 0).

3. Исследовать на четность и нечетность функции(y (x ) = y (x ) четность; y (x ) = y (x ) нечетность).

4. Найти асимптоты графика функции.

5. Найти интервалы монотонности функции.

6. Найти экстремумы функции.

7. Найти интервалы выпуклости (вогнутости) и точки перегиба графика функции.

8. На основании проведенных исследований построить график функции.

Пример. Исследовать функцию и построить ее график.

1) D (y ) =

x = 4 ‒ точка разрыва.

2) При x = 0,

(0; ‒ 5) ‒ точка пересечения с oy .

При y = 0,

3) y (x )= функция общего вида (ни четная, ни нечетная).

4) Исследуем на асимптоты.

а) вертикальные

б) горизонтальные

в) найдем наклонные асимптоты где

‒уравнение наклонной асимптоты

5) В данном уравнении не требуется найти интервалы монотонности функции.

6)

Эти критические точки разбивают всю область определения функции на интервале (˗∞; ˗2), (˗2; 4), (4; 10)и (10; +∞). Полученные результаты удобно представить в виде следующей таблицы:

нет экстр.

Из таблицы видно, что точках = ‒2‒точка максимума, в точкех = 4‒нет экстремума, х = 10 ‒точка минимума.

Подставим значение (‒ 3) в уравнение:

9 + 24 ‒ 20 > 0

25 ‒ 40 ‒ 20 < 0

121 ‒ 88 ‒ 20 > 0

Максимум этой функции равен

(‒ 2; ‒ 4) ‒ экстремум максимальный.

Минимум этой функции равен

(10; 20) ‒ экстремум минимальный.

7) исследуем на выпуклость и точку перегиба графика функции


В июле 2020 года NASA запускает экспедицию на Марс. Космический аппарат доставит на Марс электронный носитель с именами всех зарегистрированных участников экспедиции.


Если этот пост решил вашу проблему или просто понравился вам, поделитесь ссылкой на него со своими друзьями в социальных сетях.

Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

Очередной канун Нового Года... морозная погода и снежинки на оконном стекле... Все это побудило меня вновь написать о... фракталах, и о том, что знает об этом Вольфрам Альфа. По этому поводу есть интересная статья , в которой имеются примеры двумерных фрактальных структур. Здесь же мы рассмотрим более сложные примеры трехмерных фракталов.

Фрактал можно наглядно представить (описать), как геометрическую фигуру или тело (имея ввиду, что и то и другое есть множество, в данном случае, множество точек), детали которой имеют такую же форму, как и сама исходная фигура. То есть, это самоподобная структура, рассматривая детали которой при увеличении, мы будем видеть ту же самую форму, что и без увеличения. Тогда как в случае обычной геометрической фигуры (не фрактала), при увеличении мы увидим детали, которые имеют более простую форму, чем сама исходная фигура. Например, при достаточно большом увеличении часть эллипса выглядит, как отрезок прямой. С фракталами такого не происходит: при любом их увеличении мы снова увидим ту же самую сложную форму, которая с каждым увеличением будет повторяться снова и снова.

Бенуа Мандельброт (Benoit Mandelbrot), основоположник науки о фракталах, в своей статье Фракталы и искусство во имя науки написал: "Фракталы - это геометрические формы, которые в равной степени сложны в своих деталях, как и в своей общей форме. То есть, если часть фрактала будет увеличена до размера целого, она будет выглядеть, как целое, или в точности, или, возможно, с небольшой деформацией".

В задании B14 из ЕГЭ по математике требуется найти наименьшее или наибольшее значение функции одной переменной. Это достаточно тривиальная задача из математического анализа, и именно по этой причине научиться решать её в норме может и должен каждый выпускник средней школы. Разберём несколько примеров, которые школьники решали на диагностической работе по математике, прошедшей в Москве 7 декабря 2011 года.

В зависимости от промежутка, на котором требуется найти максимальное или минимальное значение функции, для решения этой задачи используется один из следующих стандартных алгоритмов.

I. Алгоритм нахождения наибольшего или наименьшего значения функции на отрезке:

  • Найти производную функции.
  • Выбрать из точек, подозрительных на экстремум, те, которые принадлежат данному отрезку и области определения функции.
  • Вычислить значения функции (не производной!) в этих точках.
  • Среди полученных значений выбрать наибольшее или наименьшее, оно и будет искомым.

Пример 1. Найдите наименьшее значение функции
y = x 3 – 18x 2 + 81x + 23 на отрезке .

Решение: действуем по алгоритму нахождения наименьшего значения функции на отрезке:

  • Область определения функции не ограничена: D(y) = R.
  • Производная функции равна: y’ = 3x 2 – 36x + 81. Область определения производной функции также не ограничена: D(y’) = R.
  • Нули производной: y’ = 3x 2 – 36x + 81 = 0, значит x 2 – 12x + 27 = 0, откуда x = 3 и x = 9, в наш промежуток входит только x = 9 (одна точка, подозрительная на экстремум).
  • Находим значение функции в точке, подозрительной на экстремум и на краях промежутка. Для удобства вычислений представим функцию в виде: y = x 3 – 18x 2 + 81x + 23 = x (x -9) 2 +23:
    • y (8) = 8 · (8-9) 2 +23 = 31;
    • y (9) = 9 · (9-9) 2 +23 = 23;
    • y (13) = 13 · (13-9) 2 +23 = 231.

Итак, из полученных значений наименьшим является 23. Ответ: 23.

II. Алгоритм нахождения наибольшего или наименьшего значения функции:

  • Найти область определения функции.
  • Найти производную функции.
  • Определить точки, подозрительные на экстремум (те точки, в которых производная функции обращается в ноль, и точки, в которых не существует двухсторонней конечной производной).
  • Отметить эти точки и область определения функции на числовой прямой и определить знаки производной (не функции!) на получившихся промежутках.
  • Определить значения функции (не производной!) в точках минимума (те точки, в которых знак производной меняется с минуса на плюс), наименьшее из этих значений будет наименьшим значением функции. Если точек минимума нет, то у функции нет наименьшего значения.
  • Определить значения функции (не производной!) в точках максимума (те точки, в которых знак производной меняется с плюса на минус), наибольшее из этих значений будет наибольшим значением функции. Если точек максимума нет, то у функции нет наибольшего значения.

Пример 2. Найдите наибольшее значение функции.