Бесконечное число решений системы уравнений. Примеры систем линейных уравнений: метод решения. Решение систем методом подстановки

Отыскание решений линейной системы
Портабельные Windows-приложения на сайте Bodrenko.com

§2. Отыскание решений линейной системы

Теорема Кронекера-Капелли устанавливает необходимое и достаточное условие совместности линейной системы, но не дает способа нахождения решений этой системы.
В этом параграфе мы займемся отысканием решений линейной системы (3.1). Сначала мы рассмотрим простейший случай квадратной системы линейных уравнений с отличным от нуля определителем основной матрицы, а затем перейдем к отысканию совокупности всех решений общей линейной системы вида (3.1).
1. Квадратная система линейных уравнений с определителем основной матрицы, отличным от нуля. Пусть дана квадратная система линейных уравнений

с отличным от нуля определителем Δ основной матрицы


Докажем, что такая система имеет, и притом единственное, решение, и найдем это решение. Сначала докажем, что система (3.10) может иметь только одно решение (т. е. докажем единственность решения системы (3.10) в предположении его существования).
Предположим, что существуют какие-либо n чисел х 1 , x 2 ,...,х n такие, что при подстановке этих чисел в систему (3.10) все уравнения этой системы обращаются в тождества (т. е. существует некоторое решение системы (3.10) х 1 , x 2 ,...,х n). Тогда, умножая тождества (3.10) соответственно на алгебраические дополнения A 1j , A 2j ,..., A nj элементов j-ro столбца определителя Δ матрицы (3.11) и складывая затем получающиеся при этом тождества, мы получим (для любого номера j, равного 1, 2,..., n)

Учитывая, что сумма произведений элементов i-го столбца на соответствующие алгебраические дополнения элементов j-ro столбца равна нулю при i ≠ j и равна определителю Δ матрицы (3.11) при i = j (cм. свойство 4° из п. 4 §2 гл. 1), мы получим из последнего равенства

x j Δ = b 1 A 1j + b 2 A 2j + ... + b n A nj . (3.12)

Обозначим символом Δ j (b i ) (или, более кратко, символом Δ j ) определитель, получающийся из определителя Δ основной матрицы (3.11) заменой его j-го столбца столбцом из свободных членов b 1 , b 2 ,...,b n (с сохранением без изменения всех остальных столбцов Δ ).
Заметим, что в правой части (3.12) стоит именно определитель Δ j (b i) (ч тобы убедиться в этом, достаточно записать разложение определителя Δ j (b i) по элементам i-го столбца ), и это равенство принимает вид

Δ x j = Δ j (3.13)

Поскольку определитель Δ матрицы (3.11) отличен от нуля, равенства (3.13) эквивалентны соотношениям

Итак, мы доказали, что если решение х 1 , x 2 ,...,х n системы (3.10) с определителем Δ основной матрицы (3.11), отличным от нуля, существует, то это решение однозначно определяется формулами (3.14) .
Формулы (3.14) называются формулами Крамера .
Еще раз подчеркнем, что формулы Крамера пока получены нами в предположении существования решения и доказывают его единственность.
Остается доказать существование решения системы (3.10). Для э того в силу теоремы Кронекера-Капелли достаточно доказать, что ранг основной матрицы (3.11) равен рангу расширенной матрицы (cуществует и другой способ доказательства существования решения системы (3.10), заключающийся в проверке того, что числа х 1 , x 2 ,...,х n , определяемые формулами Крамера (3.14), обращают в тождества все уравнения системы (3.10))

но это очевидно, ибо в силу соотношения Δ ≠ 0, ранг основной матрицы равен n, а ранг содержащей n строк расширенной матрицы (3.15) больше числа n быть не может и потому равен рангу основной матрицы.
Тем самым полностью доказано, что квадратная система линейных уравнений (3.10) с определителем основной матрицы, отличным от нуля, имеет, и притом единственное, решение, определяемое формулами Крамера (3.14).

Доказанное нами утверждение еще проще устанавливается матричным способом. Для того чтобы сделать это, заменим (как и в п. 1 § 1) систему (3.10) эквивалентным ей матричным уравнением

AX = B, (3.16)

где А - основная матрица системы (3.11), а X и В - столбцы,

первый из которых подлежит определению, а второй задан.
Так как определитель Δ матрицы А отличен от нуля, то существует обратная матрица А -1 (см. п. 7 §2 гл. 1).
Предположим, что существует решение системы (3.10), т.е. существует столбец X, обращающий в тождество матричное уравнение (3.16). Помножая указанное тождество слева на обратную матрицу А -1 будем иметь

А -1 (АХ) =А -1 В. (3.17)

Учтем теперь, что в силу сочетательного свойства произведения трех матриц (см. п. 2 § 1 гл. 1) и в силу соотношения А -1 А = Е, где Е - единичная матрица (см. п. 7 §2 гл. 1), А -1 (АХ) = (А -1 А)Х = ЕХ = X, так что мы получим из (3.17)

X = А -1 В. (3.18)

Развертывая равенство (3.18) и учитывая вид обратной матрицы (cм. формулу A.41) из п. 7 §2 гл. 1), мы и получим для элементов столбца X формулы Крамера.
Итак, мы доказали, что если решение матричного уравнения (3.16) существует, то оно однозначно определяется соотношением (3.18), эквивалентным формулам Крамера.
Легко проверить, что столбец X, определяемый соотношением (3.18), в самом деле является решением матричного уравнения (3.16),
т. е. при подстановке в это уравнение обращает его в тождество. В самом деле, если столбец X определяется равенством (3.18), то АХ = А(А -1 В) = (АА -1)В = ЕВ = В.
Итак, если определитель Δ матрицы А отличен от нуля (т. е. если эта матрица является невырожденной), то существует, и притом единственное, решение матричного уравнения (3.16), определяемое соотношением (3.18), эквивалентным формулам Крамера.
Пример. Найдем решение квадратной системы линейных уравнений

с отличным от нуля определителем основной матрицы

Поскольку

то, в силу формул Крамера, единственное решение рассматриваемой системы имеет вид х 1 = 1, х 2 = 2, x 3 = 3, х 4 = 4.
Основное значение формул Крамера состоит в том, что они дают явное выражение для решения квадратной системы линейных уравнений (с определителем, отличным от нуля) через коэффициенты уравнений и свободные члены. Практическое использование формул Крамера связано с довольно громоздкими вычислениями (для решения системы n уравнений с n неизвестными приходится вычислять (n + 1) определитель n-го порядка). К этому следует добавить, что если коэффициенты уравнений и свободные члены представляют собой лишь приближенные значения каких - либо измеряемых физических величин или округляются в процессе вычислений, то использование формул Крамера может привести к большим ошибкам и в ряде случаев является нецелесообразным.
В §4 гл.4 будет изложен метод регуляризации, принадлежащий А.Н. Тихонову и позволяющий находить решение линейной системы с точностью, соответствующей точности задания матрицы коэффициентов уравнений и столбца свободных членов, а в гл. 6 дается представление о так называемых итерационных методах решения линейных систем, позволяющих решать эти системы при помощи последовательных приближений неизвестных.
В заключении отметим, что в этом пункте мы исключили из рассмотрения случай обращения в нуль определителя Δ основной матрицы системы (3.10). Этот случай будет содержаться в общей теории систем m линейных уравнений с n неизвестными, излагаемой в следующем пункте.
2. Отыскание всех решений общей линейной системы. Рассмотрим теперь общую систему m линейных уравнений с n неизвестными (3.1). Предположим, что эта система совместна и что ранг ее основной и расширенной матриц равен числу r. Не ограничивая общности, мы можем предположить, что базисный минор основной матрицы (3.2) находится в левом верхнем углу этой матрицы (общий случай сводится к этому случаю посредством перестановки в системе (3.1) уравнений и неизвестных).
Тогда первые r строк как основной матрицы (3.2), так и расширенной матрицы (3.8) являются базисными строками этих матриц (т ак как ранги основной и расширенной матриц оба равны r, то базисный минор основной матрицы будет одновременно являться базисным минором и расширенной матрицы), и, по теореме 1.6 о базисном миноре, каждая из строк расширенной матрицы (1.8), начиная с (r + 1)-й строки, является линейной комбинацией п ервых r строк этой матрицы.
В терминах системы (3.1) это означает, что каждое из уравнений этой системы, начиная с (r + 1)-го уравнения, является линейной комбинацией (т. е. следствием) первых r уравнений этой системы (т. е. всякое решение первых г уравнений системы (3.1) обращает в тождества и все последующие уравнения этой системы ).
Таким образом, достаточно найти все решения лишь первых r уравнений системы (3.1). Рассмотрим первые r уравнений системы (3.1), записав их в виде

Если мы придадим неизвестным х r+1 ,...,х n совершенно произвольные значения c r+1 ,...,c n , то система (1.19) превратится в квадратную систему r линейных уравнений для r неизвестных х 1 , x 2 ,...,х r , причем определителем основной матрицы этой системы является отличный от нуля базисный минор матрицы (3.2). В силу результатов предыдущего пункта, эта система (3.19) имеет единственное решение, определяемое формулами Крамера, т. е. для произвольно выбранных c r+1 ,...,c n существует единственная совокупность r чисел c 1 ,...,c r , обращающих в тождества все уравнения системы (3.19) и определяющихся формулами Крамера.
Чтобы записать это единственное решение, договоримся обозначать символом M j (d i) определитель, получающийся из базисного минора М матрицы (3.2) заменой его j-ro столбца столбцом из чисел d 1 , d 2 ,...,d i ,...,d r (с сохранением без изменения всех остальных столбцов М). Тогда, записывая решение системы (3.19) с помощью формул Крамера и пользуясь линейным свойством определителя, мы получим

Формулы (3.20) выражают значения неизвестных x j = c j (j = 1, 2,......, r) через коэффициенты при неизвестных, свободные члены и произвольно заданные параметры с r+1 ,...., с n .
Докажем, что формулы (3.20) содержат любое решение системы (3.1) . В самом деле, пусть c (0) 1 , c (0) 2 ,...,c (0) r , c (0) r+1 , ...,c (0) n - произвольное решение указанной системы. Тогда оно является решением и системы (3.19). Но из системы (3.19) величины c (0) 1 , c (0) 2 ,...,c (0) r , определяются через величины c (0) r+1 , ...,c (0) n однозначно и именно по формулам Крамера (3.20). Таким образом, при с r+1 = c (0) r+1 , ..., с n = c (0) n формулы (3.20) дают нам как раз рассматриваемое решение c (0) 1 , c (0) 2 ,...,c (0) r , c (0) r+1 , ...,c (0) n .
Замечание. Если ранг r основной и расширенной матриц системы (3.1) равен числу неизвестных n, то в этом случае соотношения (3.20) переходят в формулы

определяющие единственное решение системы (3.1). Таким образом, система (3.1) имеет единственное решение (т.е. является определенной) при условии, что ранг r основной и расширенной ее матриц равен числу неизвестных n (и меньше числа уравнений m или равен ему).
Пример. Найдем все решения линейной системы

Нетрудно убедиться в том, что ранг как основной, так и расширенной матрицы этой системы равен двум (т. е. эта система совместна), причем можно считать, что базисный минор М стоит в левом верхнем углу основной матрицы, т. е. . Но тогда, отбрасывая два последних уравнения и задавая произвольно с 3 и с 4 , мы получим систему

x 1 - x 2 = 4 - c 3 + c 4 ,

x 1 + x 2 = 8 - 2c 3 - 3c 4 ,

из которой в силу формул Крамера получаем значения

x 1 = c 1 = 6 - 3/2 c 3 - c 4 , x 2 = c 2 = 2 - 1/2 c 3 - 2c 4 . (3.22)

Таким образом, четыре числа

(6 - 3/2 c 3 - c 4 ,2 - 1/2 c 3 - 2c 4 ,c 3 , c 4) (3.23)

при произвольно заданных значениях с 3 и с 4 образуют решение системы (3.21), причем строка (3.23) содержит все решения этой системы.

3. Свойства совокупности решений однородной системы. Рассмотрим теперь однородную систему m линейных уравнений с n неизвестными (3.7), предполагая, как и выше, что матрица (3.2) имеет ранг, равный r, и что базисный минор М расположен в левом верхнем углу этой матрицы. Поскольку на этот раз все b i равны нулю, вместо формул (3.20) мы получим следующие формулы:

выражающие значения неизвестных x j = c j (j = 1, 2,..., r) через коэффициенты при неизвестных и произвольно заданные значения c r+1 ,...,c n . В силу доказанного в предыдущем пункте формулы (3.24) содержат любое решение однородной системы (3.7) .
Убедимся теперь в том, что совокупность всех решений однородной системы (3.7) образует линейное пространство .
Пусть Х 1 = (x (1) 1 , x (1) 2 ,...,x (1) n) и Х 2 = (x (2) 1 , x (2) 2 ,...,x (2) n) - два произвольных решения однородной системы (3.7), а λ - любое вещественное число. В силу того, что каждое решение однородной системы (3.7) является элементом линейного пространства А n всех упорядоченных совокупностей n чисел, достаточно доказать, что каждая из двух совокупностей

Х 1 + Х 2 = (x (1) 1 + x (2) 1 ,..., x (1) n + x (2) n)

λ Х 1 = (λ x (1) 1 ,...,λ x (1) n)

также является решением однородной системы (3.7).
Рассмотрим любое уравнение системы (3.7), например i-е уравнение, и подставим в это уравнение на место неизвестных элементы указанных совокупностей. Учитывая, что Х 1 и Х 2 - решения однородной системы, будем иметь

а это и означает, что совокупности Х 1 + Х 2 и λ Х 1 являются решениями однородной системы (3.7).
Итак, совокупность всех решений однородной системы (3.7) образует линейное пространство, которое мы обозначим символом R.
Найдем размерность этого пространства R и построим в нем базис.
Докажем, что в предположении о том, что ранг матрицы однородной системы (3.7) равен r, линейное пространство R всех решений однородной системы (3.7) изоморфно линейному пространству А n-r всех упорядоченных совокупностей (n - r) чисел (п ространство А m введено в примере 3 п. 1 § 1 гл. 2).

Поставим в соответствие каждому решению (c 1 ,...,c r , c r+1 ,...,c n) однородной системы (3.7) элемент (c r+1 ,...,c n) пространства А n-r Поскольку числа c r+1 ,...,c n могут быть выбраны произвольно и при каждом выборе с помощью формул (3.24) однозначно определяют решение системы (3.7), то установленное нами соответствие является взаимно однозначным . Далее заметим, что если элементы c (1) r+1 ,...,c (1) n и c (2) r+1 ,...,c (2) n пространства А n-r отвечают элементам (c (1) 1 ,...,c (1) r , c (1) r+1 ,...,c (1) n)и (c (2) 1 ,...,c (2) r , c (2) r+1 ,...,c (2) n) пространства R, то из формул (3.24) сразу же следует, что элементу (c (1) r+1 + c (2) r+1 ,...,c (1) n +c (2) n) отвечает элемент (c (1) 1 + c (2) 1 ,...,c (1) r + c (2) r , c (1) r+1 + c (2) r+1 ,...,c (1) n +c (2) n), а элементу (λ c (1) r+1 ,...,λ c (1) n) при любом вещественном λ отвечает элемент (λ c (1) 1 ,...,λ c (1) r , λ c (1) r+1 ,...,λ c (1) n). Тем самым доказано, что установленное нами соответствие является изоморфизмом.
Итак, линейное пространство R всех решений однородной системы (3.7) с n неизвестными и рангом основной матрицы, равным r, изоморфно пространству А n-r и, стало быть, имеет размерность n - r.
Любая совокупность из (n - r) линейно независимых решений однородной системы (3.7) образует (в силу теоремы 2.5) базис в пространстве R всех решений и называется фундаментальной совокупностью решений однородной системы (3.7).
Для построения фундаментальной совокупности решений можно отправляться от любого базиса пространства А n-r . Отвечающая этому базису совокупность решений системы (3.7), в силу изоморфизма, будет линейно независимой и поэтому будет являться фундаментальной совокупностью решений.
Особо выделяют фундаментальную совокупность решений системы (3.7), отвечающую простейшему базису e 1 = (1, 0, 0,..., 0), е 2 = (1, 1, 0,..., 0), ..., е n-r = (0, 0, 0,..., 1) пространства А n-r и называемую нормальной фундаментальной совокупностью решений однородной системы (3.7).
При сделанных выше предположениях о ранге и расположении базисного минора, в силу формул (3.24), нормальная фундаментальная совокупность решений однородной системы (3.7) имеет вид:

По определению базиса любое решение X однородной системы (3.7) представимо в виде

X= C 1 X 1 + C 2 X 2 + ... + C n-r X n-r , (3.26)

где C 1 , C 2 , ...,C n-r - некоторые постоянные. Поскольку в формуле (3.26) содержится любое решение однородной системы (3.7), то эта формула дает общее решение рассматриваемой однородной системы.
Пример. Рассмотрим однородную систему уравнений:

соответствующую неоднородной системе (3.21), разобранной в примере в конце предыдущего пункта. Там мы выяснили, что ранг r матрицы этой системы равен двум, и взяли в качестве базисного минор, стоящий в левом верхнем углу указанной матрицы.
Повторяя рассуждения, проведенные в конце предыдущего пункта, мы получим вместо формул (3.22) соотношения

c 1 = - 3/2 c 3 - c 4 , c 2 = - 1/2 c 3 - 2c 4 ,

справедливые при произвольно выбранных c 3 и c 4 . С помощью этих соотношений (полагая сначала c 3 =1,c 4 =0, а затем c 3 = 0,c 4 = 1) мы получим нормальную фундаментальную совокупность двух решений системы (3.27):

X 1 = (-3/2,-1/2,1,0), X 2 = (-1,-2, 0,1). (3.28)

где С 1 и С 2 - произвольные постоянные.
В заключение этого пункта установим связь между решениями неоднородной линейной системы (3.1) и соответствующей ей однородной системы (3.7) (c теми же самыми коэффициентами при неизвестных). Докажем следующие два утверждения.
1°. Сумма любого решения неоднородной системы (3.1) с любым решением соответствующей однородной системы (3.7) представляет собой решение системы (3.1).
В самом деле, если c 1 ,...,c n - решение системы (3.1), a d 1 ,...,d n - решение соответствующей ей однородной системы (3.7), то, подставив в любое (например, в i-е) уравнение системы (3.1) на место неизвестных числа c 1 + d 1 ,...,c n + d n , получим

что и требовалось доказать.
2°. Разность двух произвольных решений неоднородной системы (3.1) является решением соответствующей однородной системы (3.7).
В самом деле, если c" 1 ,...,c" n и c" 1 ,...,c" n - два произвольных решения системы (3.1), то, подставив в любое (например, в i-е) уравнение системы (3.7) на место неизвестных числа c" 1 - c" 1 ,...,c" n - c" n получим

что и требовалось доказать.
Из доказанных утверждений вытекает, что, найдя одно решение неоднородной системы (3.1) и складывая его с каждым решением соответствующей однородной системы (3.7), мы получим все решения неоднородной системы (3.1).
Другими словами, сумма частного решения неоднородной системы (3.1) и общего решения соответствующей однородной системы (3.7) дает общее решение неоднородной системы (3.1).
В качестве частного решения неоднородной системы (3.1) естественно взять то его решение (п ри этом предполагается, как и выше, что ранги основной и расширенной матриц системы (3.1) равны r и что базисный минор находится в левом верхнем углу этих матриц)

которое получится, если в формулах (3.20) положить равными нулю все числа c r+1 ,...,c n . Складывая это частное решение с общим решением (3.26) соответствующей однородной системы, мы получим следующее выражение для общего решения неоднородной системы (3.1):

X= X 0 + C 1 X 1 + C 2 X 2 + ... + C n-r X n-r . (3.30)

В этом выражении X 0 обозначает частное решение (3.29), C 1 , C 2 , ... , C n-r - произвольные постоянные, а X 1 ,X 2 ,... ,X n-r - элементы нормальной фундаментальной совокупности решений (3.25) соответствующей однородной системы.
Так, для рассмотренной в конце предыдущего пункта неоднородной системы (3.21) частное решение вида (3.29) равно Х 0 =(6,2,0, 0).
Складывая это частное решение с общим решением (3.28) соответствующей однородной системы (3.27), мы получим следующее общее решение неоднородной системы (3.21):

X = (6,2,0, 0) + C 1 (-3/2,-1/2,1,0) + C 2 (-1,-2, 0,1). (3.31)

Здесь C 1 и C 2 - произвольные постоянные.
4. Заключительные замечания о решении линейных систем. Развитые в предыдущих пунктах методы решения линейных систем
упираются в необходимость вычисления ранга матрицы и нахождения ее базисного минора. После того, как базисный минор найден, решение сводится к технике вычисления определителей и к использованию формул Крамера.
Для вычисления ранга матрицы можно использовать следующее правило: при вычислении ранга матрицы следует переходить от миноров меньших порядков к минорам больших порядков; при этом, если уже найден отличный от нуля минор М порядка k, то требуют вычисления лишь миноры порядка (k + 1), окаймляющие (т о есть содержащие внутри себя минор М) этот минор М; в случае равенства нулю всех окаймляющих миноров порядка (k + 1) ранг матрицы равен к (в самом деле, в указанном случае все строки (столбцы) матрицы принадлежат линейной оболочке ее k строк (столбцов), на пересечении которых стоит минор М, а размерность указанной линейной оболочки равна k).
Укажем и другое правило вычисления ранга матрицы. Заметим, что со строками (столбцами) матрицы можно производить три элементарные операции , не изменяющие ранга этой матрицы: 1) перестановку двух строк (или двух столбцов), 2) умножение строки (или столбца) на любой отличный от нуля множитель, 3) прибавление к одной строке (столбцу) произвольной линейной комбинации других строк (столбцов) (э ти три операции не изменяют ранга матрицы вследствие того, что операции 1) и 2) не изменяют максимального числа линейно независимых строк (столбцов) матрицы, а операция 3) обладает тем свойством, что линейная оболочка всех строк (столбцов), имевшихся до проведения этой операции, совпадает с линейной оболочкой всех строк (столбцов), полученных после проведения этой операции).
Будем говорить, что матрица ||а ij ||, содержащая m строк и n столбцов, имеет диагональный вид, если равны нулю все ее элементы, отличные от а 11 , а 22 ,.., a rr , где r = min{m, n}. Ранг такой матрицы, очевидно, равен r.
Убедимся в том, что посредством трех элементарных операций любую матрицу

можно привести к диагональному виду (что и позволяет вычислить ее ранг).

В самом деле, если все элементы матрицы (3.31) равны нулю, то эта матрица уже приведена к диагональному виду. Если же у мат-
рицы (3.31) есть отличные от нуля элементы, то путем перестановки двух строк и двух столбцов можно добиться того, чтобы был отличен от нуля элемент а 11 . Умножая после этого первую строку матрицы на а 11 -1 , мы превратим элемент а 11 в единицу. Вычитая далее из j-ro столбца матрицы (при j = 2, 3,..., n) первый столбец, умноженный на а i1 , а затем вычитая из i-й строки (при i = 2, 3,..., n) первую строку, умноженную на а i1 , мы получим вместо (3.31) матрицу следующего вида:

Совершая уже описанные нами операции с матрицей, взятой в рамку, и продолжая действовать аналогичным способом, мы после конечного числа шагов получим матрицу диагонального вида.
Изложенные в предыдущих пунктах методы решения линейных систем, использующие, в конечном итоге, аппарат формул Крамера, могут привести к большим погрешностям в случае, когда значения коэффициентов уравнений и свободных членов заданы приближенно или когда производится округление этих значений в процессе вычислений.
В первую очередь это относится к случаю, когда матрица, отвечающая основному определителю (или базисному минору), является плохо обусловленной (т. е. когда «малым» изменениям элементов этой матрицы отвечают «большие» изменения элементов обратной матрицы). Естественно, что в этом случае решение линейной системы будет неустойчивым (т. е. «малым» изменениям значений коэффициентов уравнений и свободных членов будут отвечать «большие» изменения решения).
Отмеченные обстоятельства приводят к необходимости разработки как других (отличных от формул Крамера) теоретических алгоритмов отыскания решения, так и численных методов решения линейных систем.
В §4 гл.4 мы познакомимся с методом регуляризации А.Н. Тихонова отыскания так называемого нормального (т. е. наиболее близкого к началу координат) решения линейной системы.
В гл.6 будут изложены основные сведения о так называемых итерационных методах решения линейных систем, позволяющих решать эти системы при помощи последовательных приближений неизвестных.

Пример 1 . Найти общее решение и какое–нибудь частное решение системы

Решение выполняем с помощью калькулятора . Выпишем расширенную и основную матрицы:

Пунктиром отделена основная матрица A. Сверху пишем неизвестные системы, имея в виду возможную перестановку слагаемых в уравнениях системы. Определяя ранг расширенной матрицы, одновременно найдем ранг и основной. В матрице B первый и второй столбцы пропорциональны. Из двух пропорциональных столбцов в базисный минор может попасть только один, поэтому перенесем, например, первый столбец за пунктирную черту с обратным знаком. Для системы это означает перенос членов с x 1 в правую часть уравнений.

Приведем матрицу к треугольному виду. Будем работать только со строками, так как умножение строки матрицы на число, отличное от нуля, и прибавление к другой строке для системы означает умножение уравнения на это же число и сложение с другим уравнением, что не меняет решения системы. Работаем с первой строкой: умножим первую строку матрицы на (-3) и прибавим ко второй и третьей строкам по очереди. Затем первую строку умножим на (-2) и прибавим к четвертой.

Вторая и третья строки пропорциональны, следовательно, одну из них, например вторую, можно вычеркнуть. Это равносильно вычеркиванию второго уравнения системы, так как оно является следствием третьего.

Теперь работаем со второй строкой: умножим ее на (-1) и прибавим к третьей.

Минор, обведенный пунктиром, имеет наивысший порядок (из возможных миноров) и отличен от нуля (он равен произведению элементов, стоящих на главной диагонали), причем этот минор принадлежит как основной матрице, так и расширенной, следовательно rangA = rangB = 3 .
Минор является базисным. В него вошли коэффициенты при неизвестных x 2 , x 3 , x 4 , значит, неизвестные x 2 , x 3 , x 4 – зависимые, а x 1 , x 5 – свободные.
Преобразуем матрицу, оставляя слева только базисный минор (что соответствует пункту 4 приведенного выше алгоритма решения).

Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид

Методом исключения неизвестных находим:
x 4 =3-4x 5 , x 3 =3-4x 5 -2x 4 =3-4x 5 -6+8x 5 =-3+4x 5
x 2 =x 3 +2x 4 -2+2x 1 +3x 5 = -3+4x 5 +6-8x 5 -2+2x 1 +3x 5 = 1+2x 1 -x 5
Получили соотношения, выражающие зависимые переменные x 2 , x 3 , x 4 через свободные x 1 и x 5 , то есть нашли общее решение:

Придавая свободным неизвестным любые значения, получим сколько угодно частных решений. Найдем два частных решения:
1) пусть x 1 = x 5 = 0, тогда x 2 = 1, x 3 = -3, x 4 = 3;
2) положим x 1 = 1, x 5 = -1, тогда x 2 = 4, x 3 = -7, x 4 = 7.
Таким образом, нашли два решения: (0,1,-3,3,0) – одно решение, (1,4,-7,7,-1) – другое решение.

Пример 2 . Исследовать совместность, найти общее и одно частное решение системы

Решение . Переставим первое и второе уравнения, чтобы иметь единицу в первом уравнении и запишем матрицу B.

Получим нули в четвертом столбце, оперируя первой строкой:

Теперь получим нули в третьем столбце с помощью второй строки:

Третья и четвертая строки пропорциональны, поэтому одну из них можно вычеркнуть, не меняя ранга:
Третью строку умножим на (–2) и прибавим к четвертой:

Видим, что ранги основной и расширенной матриц равны 4, причем ранг совпадает с числом неизвестных, следовательно, система имеет единственное решение:
-x 1 =-3 → x 1 =3; x 2 =3-x 1 → x 2 =0; x 3 =1-2x 1 → x 3 =5.
x 4 = 10- 3x 1 – 3x 2 – 2x 3 = 11.

Пример 3 . Исследовать систему на совместность и найти решение, если оно существует.

Решение . Составляем расширенную матрицу системы.

Переставляем первые два уравнения, чтобы в левом верхнем углу была 1:
Умножая первую строку на (-1), складываем ее с третьей:

Умножим вторую строку на (-2) и прибавим к третьей:

Система несовместна, так как в основной матрице получили строку, состоящую из нулей, которая вычеркивается при нахождении ранга, а в расширенной матрице последняя строка останется, то есть r B > r A .

Задание . Исследовать данную систему уравнений на совместность и решить ее средствами матричного исчисления .
Решение

Пример . Доказать совместимость системы линейных уравнений и решить ее двумя способами: 1) методом Гаусса ; 2) методом Крамера . (ответ ввести в виде: x1,x2,x3)
Решение :doc :doc :xls
Ответ: 2,-1,3.

Пример . Дана система линейных уравнений. Доказать ее совместность. Найти общее решение системы и одно частное решение.
Решение
Ответ: x 3 = - 1 + x 4 + x 5 ; x 2 = 1 - x 4 ; x 1 = 2 + x 4 - 3x 5

Задание . Найти общее и частное решения каждой системы.
Решение. Исследуем эту систему по теореме Кронекера-Капелли.
Выпишем расширенную и основную матрицы:

1 1 14 0 2 0
3 4 2 3 0 1
2 3 -3 3 -2 1
x 1 x 2 x 3 x 4 x 5

Здесь матрица А выделена жирным шрифтом.
Приведем матрицу к треугольному виду. Будем работать только со строками, так как умножение строки матрицы на число, отличное от нуля, и прибавление к другой строке для системы означает умножение уравнения на это же число и сложение с другим уравнением, что не меняет решения системы.
Умножим 1-ую строку на (3). Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой:
0 -1 40 -3 6 -1
3 4 2 3 0 1
2 3 -3 3 -2 1

Умножим 2-ую строку на (2). Умножим 3-ую строку на (-3). Добавим 3-ую строку к 2-ой:
0 -1 40 -3 6 -1
0 -1 13 -3 6 -1
2 3 -3 3 -2 1

Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой:
0 0 27 0 0 0
0 -1 13 -3 6 -1
2 3 -3 3 -2 1

Выделенный минор имеет наивысший порядок (из возможных миноров) и отличен от нуля (он равен произведению элементов, стоящих на обратной диагонали), причем этот минор принадлежит как основной матрице, так и расширенной, следовательно rang(A) = rang(B) = 3. Поскольку ранг основной матрицы равен рангу расширенной, то система является совместной .
Этот минор является базисным. В него вошли коэффициенты при неизвестных x 1 ,x 2 ,x 3 , значит, неизвестные x 1 ,x 2 ,x 3 – зависимые (базисные), а x 4 ,x 5 – свободные.
Преобразуем матрицу, оставляя слева только базисный минор.
0 0 27 0 0 0
0 -1 13 -1 3 -6
2 3 -3 1 -3 2
x 1 x 2 x 3 x 4 x 5
Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид:
27x 3 =
- x 2 + 13x 3 = - 1 + 3x 4 - 6x 5
2x 1 + 3x 2 - 3x 3 = 1 - 3x 4 + 2x 5
Методом исключения неизвестных находим:
Получили соотношения, выражающие зависимые переменные x 1 ,x 2 ,x 3 через свободные x 4 ,x 5 , то есть нашли общее решение :
x 3 = 0
x 2 = 1 - 3x 4 + 6x 5
x 1 = - 1 + 3x 4 - 8x 5
неопределенной , т.к. имеет более одного решения.

Задание . Решить систему уравнений.
Ответ :x 2 = 2 - 1.67x 3 + 0.67x 4
x 1 = 5 - 3.67x 3 + 0.67x 4
Придавая свободным неизвестным любые значения, получим сколько угодно частных решений. Система является неопределенной

Однако на практике широко распространены еще два случая:

– Система несовместна (не имеет решений);
– Система совместна и имеет бесконечно много решений.

Примечание : термин «совместность» подразумевает, что у системы существует хоть какое-то решение. В ряде задач требуется предварительно исследовать систему на совместность, как это сделать – см. статью о ранге матриц .

Для этих систем применяют наиболее универсальный из всех способов решения – метод Гаусса . На самом деле, к ответу приведет и «школьный» способ, но в высшей математике принято использовать гауссовский метод последовательного исключения неизвестных. Те, кто не знаком с алгоритмом метода Гаусса, пожалуйста, сначала изучите урок метод Гаусса для чайников .

Сами элементарные преобразования матрицы – точно такие же , разница будет в концовке решения. Сначала рассмотрим пару примеров, когда система не имеет решений (несовместна).

Пример 1

Что сразу бросается в глаза в этой системе? Количество уравнений – меньше, чем количество переменных. Если количество уравнений меньше, чем количество переменных , то сразу можно сказать, что система либо несовместна, либо имеет бесконечно много решений. И это осталось только выяснить.

Начало решения совершенно обычное – запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

(1) На левой верхней ступеньке нам нужно получить +1 или –1. Таких чисел в первом столбце нет, поэтому перестановка строк ничего не даст. Единицу придется организовать самостоятельно, и сделать это можно несколькими способами. Я поступил так: К первой строке прибавляем третью строку, умноженную на –1.

(2) Теперь получаем два нуля в первом столбце. Ко второй строке прибавляем первую строку, умноженную на 3. К третьей строке прибавляем первую строку, умноженную на 5.

(3) После выполненного преобразования всегда целесообразно посмотреть, а нельзя ли упростить полученные строки? Можно. Вторую строку делим на 2, заодно получая нужную –1 на второй ступеньке. Третью строку делим на –3.

(4) К третьей строке прибавляем вторую строку.

Наверное, все обратили внимание на нехорошую строку, которая получилась в результате элементарных преобразований: . Ясно, что так быть не может. Действительно, перепишем полученную матрицу обратно в систему линейных уравнений:

Если в результате элементарных преобразований получена строка вида , где – число, отличное от нуля, то система несовместна (не имеет решений) .

Как записать концовку задания? Нарисуем белым мелом: «в результате элементарных преобразований получена строка вида , где » и дадим ответ: система не имеет решений (несовместна).

Если же по условию требуется ИССЛЕДОВАТЬ систему на совместность, тогда необходимо оформить решение в более солидном стиле с привлечением понятия ранга матрицы и теоремы Кронекера-Капелли .

Обратите внимание, что здесь нет никакого обратного хода алгоритма Гаусса – решений нет и находить попросту нечего.

Пример 2

Решить систему линейных уравнений

Это пример для самостоятельного решения. Полное решение и ответ в конце урока. Снова напоминаю, что ваш ход решения может отличаться от моего хода решения, у алгоритма Гаусса нет сильной «жёсткости».

Еще одна техническая особенность решения: элементарные преобразования можно прекращать сразу же , как только появилась строка вида , где . Рассмотрим условный пример: предположим, что после первого же преобразования получилась матрица . Матрица еще не приведена к ступенчатому виду, но в дальнейших элементарных преобразованиях нет никакой необходимости, так как появилась строка вида , где . Следует сразу дать ответ, что система несовместна.

Когда система линейных уравнений не имеет решений – это почти подарок, ввиду того, что получается короткое решение, иногда буквально в 2-3 действия.

Но всё в этом мире уравновешено, и задача, в которой система имеет бесконечно много решений – как раз длиннее.

Пример 3

Решить систему линейных уравнений

Тут 4 уравнений и 4 неизвестных, таким образом, система может иметь либо единственное решение, либо не иметь решений, либо иметь бесконечно много решений. Как бы там ни было, но метод Гаусса в любом случае приведет нас к ответу. В этом его и универсальность.

Начало опять стандартное. Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Вот и всё, а вы боялись.

(1) Обратите внимание, что все числа в первом столбце делятся на 2, поэтому на левой верхней ступеньке нас устраивает и двойка. Ко второй строке прибавляем первую строку, умноженную на –4. К третьей строке прибавляем первую строку, умноженную на –2. К четвертой строке прибавляем первую строку, умноженную на –1.

Внимание! У многих может возникнуть соблазн из четвертой строки вычесть первую строку. Так делать можно, но не нужно, опыт показывает, что вероятность ошибки в вычислениях увеличивается в несколько раз. Только складываем: К четвертой строке прибавляем первую строку, умноженную на –1 – именно так!

(2) Последние три строки пропорциональны, две из них можно удалить.

Здесь опять нужно проявить повышенное внимание , а действительно ли строки пропорциональны? Для перестраховки (особенно, чайнику) не лишним будет вторую строку умножить на –1, а четвертую строку разделить на 2, получив в результате три одинаковые строки. И только после этого удалить две из них.

В результате элементарных преобразований расширенная матрица системы приведена к ступенчатому виду:

При оформлении задачи в тетради желательно для наглядности делать такие же пометки карандашом.

Перепишем соответствующую систему уравнений:

«Обычным» единственным решением системы здесь и не пахнет. Нехорошей строки тоже нет. Значит, это третий оставшийся случай – система имеет бесконечно много решений. Иногда по условию нужно исследовать совместность системы (т.е. доказать, что решение вообще существует), об этом можно прочитать в последнем параграфе статьи Как найти ранг матрицы? Но пока разбираем азы:

Бесконечное множество решений системы коротко записывают в виде так называемого общего решения системы .

Общее решение системы найдем с помощью обратного хода метода Гаусса.

Сначала нужно определить, какие переменные у нас являются базисными , а какие переменные свободными . Не обязательно заморачиваться терминами линейной алгебры, достаточно запомнить, что вот существуют такие базисные переменные и свободные переменные .

Базисные переменные всегда «сидят» строго на ступеньках матрицы .
В данном примере базисными переменными являются и

Свободные переменные – это все оставшиеся переменные, которым не досталось ступеньки. В нашем случае их две: – свободные переменные.

Теперь нужно все базисные переменные выразить только через свободные переменные .

Обратный ход алгоритма Гаусса традиционно работает снизу вверх.
Из второго уравнения системы выражаем базисную переменную :

Теперь смотрим на первое уравнение: . Сначала в него подставляем найденное выражение :

Осталось выразить базисную переменную через свободные переменные :

В итоге получилось то, что нужно – все базисные переменные ( и ) выражены только через свободные переменные :

Собственно, общее решение готово:

Как правильно записать общее решение?
Свободные переменные записываются в общее решение «сами по себе» и строго на своих местах. В данном случае свободные переменные следует записать на второй и четвертой позиции:
.

Полученные же выражения для базисных переменных и , очевидно, нужно записать на первой и третьей позиции:

Придавая свободным переменным произвольные значения , можно найти бесконечно много частных решений . Самыми популярными значениями являются нули, поскольку частное решение получается проще всего. Подставим в общее решение:

– частное решение.

Другой сладкой парочкой являются единицы, подставим в общее решение:

– еще одно частное решение.

Легко заметить, что система уравнений имеет бесконечно много решений (так как свободным переменным мы можем придать любые значения)

Каждое частное решение должно удовлетворять каждому уравнению системы. На этом основана «быстрая» проверка правильности решения. Возьмите, например, частное решение и подставьте его в левую часть каждого уравнения исходной системы:

Всё должно сойтись. И с любым полученным вами частным решением – тоже всё должно сойтись.

Но, строго говоря, проверка частного решения иногда обманывает, т.е. какое-нибудь частное решение может удовлетворять каждому уравнению системы, а само общее решение на самом деле найдено неверно.

Поэтому более основательна и надёжна проверка общего решения. Как проверить полученное общее решение ?

Это несложно, но довольно муторно. Нужно взять выражения базисных переменных, в данном случае и , и подставить их в левую часть каждого уравнения системы.

В левую часть первого уравнения системы:


В левую часть второго уравнения системы:


Получена правая часть исходного уравнения.

Пример 4

Решить систему методом Гаусса. Найти общее решение и два частных. Сделать проверку общего решения.

Это пример для самостоятельного решения. Здесь, кстати, снова количество уравнений меньше, чем количество неизвестных, а значит, сразу понятно, что система будет либо несовместной, либо с бесконечным множеством решений. Что важно в самом процессе решения? Внимание, и еще раз внимание . Полное решение и ответ в конце урока.

И еще пара примеров для закрепления материала

Пример 5

Решить систему линейных уравнений. Если система имеет бесконечно много решений, найти два частных решения и сделать проверку общего решения

Решение : Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

(1) Ко второй строке прибавляем первую строку. К третьей строке прибавляем первую строку, умноженную на 2. К четвертой строке прибавляем первую строку, умноженную на 3.
(2) К третьей строке прибавляем вторую строку, умноженную на –5. К четвертой строке прибавляем вторую строку, умноженную на –7.
(3) Третья и четвертая строки одинаковы, одну из них удаляем.

Вот такая красота:

Базисные переменные сидят на ступеньках, поэтому – базисные переменные.
Свободная переменная, которой не досталось ступеньки здесь всего одна:

Обратный ход:
Выразим базисные переменные через свободную переменную:
Из третьего уравнения:

Рассмотрим второе уравнение и подставим в него найденное выражение :


Рассмотрим первое уравнение и подставим в него найденные выражения и :

Да, всё-таки удобен калькулятор, который считает обыкновенные дроби.

Таким образом, общее решение:

Еще раз, как оно получилось? Свободная переменная одиноко сидит на своём законном четвертом месте. Полученные выражения для базисных переменных , тоже заняли свои порядковые места.

Сразу выполним проверку общего решения. Работа для негров, но она у меня уже выполнена, поэтому ловите =)

Подставляем трех богатырей , , в левую часть каждого уравнения системы:

Получены соответствующие правые части уравнений, таким образом, общее решение найдено верно.

Теперь из найденного общего решения получим два частных решения. Шеф-поваром здесь выступает единственная свободная переменная . Ломать голову не нужно.

Пусть , тогда – частное решение.
Пусть , тогда – еще одно частное решение.

Ответ : Общее решение: , частные решения: , .

Зря я тут про негров вспомнил... ...потому что в голову полезли всякие садистские мотивы и вспомнилась известная фотожаба, на которой куклуксклановцы в белых балахонах бегут по полю за чернокожим футболистом. Сижу, тихо улыбаюсь. Знаете, как отвлекает….

Много математики вредно, поэтому похожий заключительный пример для самостоятельного решения.

Пример 6

Найти общее решение системы линейных уравнений.

Проверка общего решения у меня уже сделана, ответу можно доверять. Ваш ход решения может отличаться от моего хода решения, главное, чтобы совпали общие решения.

Наверное, многие заметили неприятный момент в решениях: очень часто при обратном ходе метода Гаусса нам пришлось возиться с обыкновенными дробями. На практике это действительно так, случаи, когда дробей нет – встречаются значительно реже. Будьте готовы морально, и, самое главное, технически.

Остановлюсь на некоторых особенностях решения, которые не встретились в прорешанных примерах.

В общее решение системы иногда может входить константа (или константы), например: . Здесь одна из базисных переменных равна постоянному числу: . В этом нет ничего экзотического, так бывает. Очевидно, что в данном случае любое частное решение будет содержать пятерку на первой позиции.

Редко, но встречаются системы, в которых количество уравнений больше количества переменных . Метод Гаусса работает в самых суровых условиях, следует невозмутимо привести расширенную матрицу системы к ступенчатому виду по стандартному алгоритму. Такая система может быть несовместной, может иметь бесконечно много решений, и, как ни странно, может иметь единственное решение.

Разделы: Математика

Если в задаче меньше трех переменных, это не задача; если больше восьми – она неразрешима. Энон.

Задачи с параметрами встречаются во всех вариантах ЕГЭ, поскольку при их решении наиболее ярко выявляется, насколько глубоки и неформальны знания выпускника. Трудности, возникающие у учащихся при выполнении подобных заданий, вызваны не только относительной их сложностью, но и тем, что в учебных пособиях им уделяется недостаточно внимания. В вариантах КИМов по математике встречается два типа заданий с параметрами. Первый: «для каждого значения параметра решить уравнение, неравенство или систему». Второй: «найти все значения параметра, при каждом из которых решения неравенства, уравнения или системы удовлетворяют заданным условиям». Соответственно и ответы в задачах этих двух типов различаются по существу. В первом случае в ответе перечисляются все возможные значения параметра и для каждого из этих значений записываются решения уравнения. Во втором – перечисляются все значения параметра, при которых выполнены условия задачи. Запись ответа является существенным этапом решения, очень важно не забыть отразить все этапы решения в ответе. На это необходимо обращать внимание учащихся.
В приложении к уроку приведен дополнительный материал по теме «Решение систем линейных уравнений с параметрами», который поможет при подготовке учащихся к итоговой аттестации.

Цели урока:

  • систематизация знаний учащихся;
  • выработка умений применять графические представления при решении систем уравнений;
  • формирование умения решать системы линейных уравнений, содержащих параметры;
  • осуществление оперативного контроля и самоконтроля учащихся;
  • развитие исследовательской и познавательной деятельности школьников, умения оценивать полученные результаты.

Урок рассчитан на два учебных часа.

Ход урока

  1. Организационный момент

Сообщение темы, целей и задач урока.

  1. Актуализация опорных знаний учащихся

Проверка домашней работы. В качестве домашнего задания учащимся было предложено решить каждую из трех систем линейных уравнений

а) б) в)

графически и аналитически; сделать вывод о количестве полученных решений для каждого случая

Заслушиваются и анализируются выводы, сделанные учащимися. Результаты работы под руководством учителя в краткой форме оформляются в тетрадях.

В общем виде систему двух линейных уравнений с двумя неизвестными можно представить в виде: .

Решить данную систему уравнений графически – значит найти координаты точек пересечения графиков данных уравнений или доказать, что таковых нет. Графиком каждого уравнения этой системы на плоскости является некоторая прямая.

Возможны три случая взаимного расположения двух прямых на плоскости:

<Рисунок1>;

<Рисунок2>;

<Рисунок3>.

К каждому случаю полезно выполнить рисунок.

  1. Изучение нового материала

Сегодня на уроке мы научимся решать системы линейных уравнений, содержащие параметры. Параметром будем называть независимую переменную, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству. Решить систему уравнений с параметром – значит установить соответствие, позволяющее для любого значения параметра найти соответствующее множество решений системы.

Решение задачи с параметром зависит от вопроса, поставленного в ней. Если нужно просто решить систему уравнений при различных значениях параметра или исследовать ее, то необходимо дать обоснованный ответ для любого значения параметра или для значения параметра, принадлежащего заранее оговоренному в задаче множеству. Если же необходимо найти значения параметра, удовлетворяющие определенным условиям, то полного исследования не требуется, и решение системы ограничивается нахождением именно этих конкретных значений параметра.

Пример 1. Для каждого значения параметра решим систему уравнений

Решение.

  1. Система имеет единственное решение, если

В этом случае имеем

  1. Если а = 0, то система принимает вид

Система несовместна, т.е. решений не имеет.

  1. Если то система запишется в виде

Очевидно, что в этом случае система имеет бесконечно много решений вида x = t; где t-любое действительное число.

Ответ:

Пример 2.

  • имеет единственное решение;
  • имеет множество решений;
  • не имеет решений?

Решение.

Ответ:

Пример 3. Найдем сумму параметров a и b, при которых система

имеет бесчисленное множество решений.

Решение. Система имеет бесчисленное множество решений, если

То есть если a = 12, b = 36; a + b = 12 + 36 =48.

Ответ: 48.

  1. Закрепление изученного в ходе решения задач
  1. № 15.24(а) . Для каждого значения параметра решите систему уравнений

  1. № 15.25(а) Для каждого значения параметра решите систему уравнений

  1. При каких значениях параметра a система уравнений

а) не имеет решений; б) имеет бесконечно много решений.

Ответ: при а = 2 решений нет, при а = -2 бесконечное множество решений

  1. Практическая работа в группах

Класс разбивается на группы по 4-5 человек. В каждую группу входят учащиеся с разным уровнем математической подготовки. Каждая группа получает карточку с заданием. Можно предложить всем группам решить одну систему уравнений, а решение оформить. Группа, первой верно выполнившая задание, представляет свое решение; остальные сдают решение учителю.

Карточка. Решите систему линейных уравнений

при всех значениях параметра а.

Ответ: при система имеет единственное решение ; при нет решений; при а = -1бесконечно много решений вида, (t; 1- t) где t R

Если класс сильный, группам могут быть предложены разные системы уравнений, перечень которых находится в Приложении1 . Тогда каждая группа представляет классу свое решение.

Отчет группы, первой верно выполнившей задание

Участники озвучивают и поясняют свой вариант решения и отвечают на вопросы, возникшие у представителей остальных групп.

  1. Самостоятельная работа

Вариант 1

Вариант 2

  1. Итоги урока

Решение систем линейных уравнений с параметрами можно сравнить с исследованием, которое включает в себя три основных условия. Учитель предлагает учащимся их сформулировать.

При решении следует помнить:

  1. для того, чтобы система имела единственное решение, нужно, чтобы прямые, отвечающие уравнению системы, пересекались, т.е. необходимо выполнение условия;
  2. чтобы не имела решений, нужно, чтобы прямые были параллельны, т.е. выполнялось условие,
  3. и, наконец, чтобы система имела бесконечно много решений, прямые должны совпадать, т.е. выполнялось условие.

Учитель оценивает работу на уроке класса в целом и выставляет отметки за урок отдельным учащимся. После проверки самостоятельной работы оценку за урок получит каждый ученик.

  1. Домашнее задание

При каких значениях параметра b система уравнений

  • имеет бесконечно много решений;
  • не имеет решений?

Графики функций y = 4x + b и y = kx + 6 симметричны относительно оси ординат.

  • Найдите b и k,
  • найдите координаты точки пересечения этих графиков.

Решите систему уравнений при всех значениях m и n.

Решите систему линейных уравнений при всех значениях параметра а (любую на выбор).

Литература

  1. Алгебра и начала математического анализа: учеб. для 11 кл. общеобразоват. учреждений: базовый и профил. уровни / С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин – М. : Просвещение, 2008.
  2. Математика: 9 класс: Подготовка к государственной итоговой аттестации / М. Н. Корчагина, В. В. Корчагин – М. : Эксмо, 2008.
  3. Готовимся в вуз. Математика. Часть 2. Учебное пособие для подготовки к ЕГЭ, участию в централизованном тестировании и сдаче вступительных испытаний в КубГТУ / Кубан. гос. технол. ун-т; Ин-т совр. технол. и экон.; Сост.: С. Н. Горшкова, Л. М. Данович, Н.А. Наумова, А.В. Мартыненко, И.А. Пальщикова. – Краснодар, 2006.
  4. Сборник задач по математике для подготовительных курсов ТУСУР: Учебное пособие / З. М. Гольдштейн, Г. А. Корниевская, Г. А. Коротченко, С.Н. Кудинова. – Томск: Томск. Гос. ун-т систем управления и радиоэлектроники, 1998.
  5. Математика: интенсивный курс подготовки к экзамену/ О. Ю. Черкасов, А.Г.Якушев. – М.: Рольф, Айрис-пресс, 1998.

Решение . A = . Найдем r(А). Так как матрица А имеет порядок 3х4, то наивысший порядок миноров равен 3. При этом все миноры третьего порядка равны нулю (проверить самостоятельно). Значит , r(А) < 3. Возьмем главный базисный минор = -5-4 = -9 0. Следовательно r(А) =2.

Рассмотрим матрицу С = .

Минор третьего порядка 0. Значит, r(C) = 3.

Так как r(А) r(C) , то система несовместна.

Пример 2. Определить совместность системы уравнений

Решить эту систему, если она окажется совместной.

Решение .

A = , C = . Oчевидно, что r(А) ≤ 3, r(C) ≤ 4. Так как detC = 0, то r(C) < 4. Рассмотрим минор третьего порядка , расположенный в левом верхнем углу матрицы А и С: = -23 0. Значит, r(А) = r(C) = 3.

Число неизвестных в системе n=3 . Значит, система имеет единственное решение. При этом четвертое уравнение представляет сумму первых трех и его можно не принимать во внимание.

По формулам Крамера получаем x 1 = -98/23, x 2 = -47/23, x 3 = -123/23.

2.4. Mатричный метод. Mетод Гаусса

Систему n линейных уравнений с n неизвестными можно решать матричным методом по формуле X = A -1 B (при Δ 0), которая получается из (2) умножением обоих частей на А -1 .

Пример 1. Решить систему уравнений

матричным методом (в параграфе 2.2 эта система была решена по формулам Крамера)

Решение . Δ = 10 0 А = - невырожденная матрица.

= (убедитесь в этом самостоятельно, произведя необходимые вычисления).

A -1 = (1/Δ)х= .

Х = A -1 В = х= .

Ответ : .

С практической точки зрения матричный метод и формулы Крамера связаны с большим объемом вычислений, поэтому предпочтение отдается методу Гаусса , который заключается в последовательном исключении неизвестных. Для этого систему уравнений приводят к эквивалентной ей системе с треугольной расширенной матрицей (все элементы ниже главной диагонали равны нулю). Эти действия называют прямым ходом . Из полученной треугольной системы переменные находят с помощью последовательных подстановок (обратный ход ).

Пример 2 . Методом Гаусса решить систему

(Выше эта система была решена по формуле Крамера и матричным методом).

Решение .

Прямой ход . Запишем расширенную матрицу и с помощью элементарных преобразований приведем ее к треугольному виду:

~ ~ ~ ~ .

Получим систему

Обратный ход. Из последнего уравнения находим х 3 = -6 и подставим это значение во второе уравнение:

х 2 = - 11/2 - 1/4 х 3 = - 11/2 - 1/4(-6) = - 11/2 + 3/2 = -8/2 = -4.

х 1 = 2 - х 2 + х 3 = 2+4-6 = 0.

Ответ : .

2.5. Общее решение системы линейных уравнений

Пусть дана система линейных уравнений = b i (i =). Пусть r(A) = r(C) = r, т.е. система совместна. Любой минор порядка r, отличный от нуля, является базисным минором. Не ограничивая общности, будем считать, что базисный минор располагается в первых r (1 ≤ r ≤ min(m,n)) строках и столбцах матрицы А. Отбросив последние m-r уравнений системы, запишем укороченную систему:


которая эквивалентна исходной. Назовем неизвестные х 1 ,….х r базисными , а х r +1 ,…, х r свободными и перенесем слагаемые, содержащие свободные неизвестные, в правую часть уравнений укороченной системы. Получаем систему относительно базисных неизвестных:

koтоторая для каждого набора значений свободных неизвестных х r +1 = С 1 ,…, х n = С n-r имеет единственное рeшение х 1 (С 1 ,…, С n-r),…, х r (С 1 ,…, С n-r), находимое по правилу Крамера.

Соответствующее решение укороченной, а следовательно, и исходной системы имеет вид:

Х(С 1 ,…, С n-r) = - общее решение системы.

Если в общем решении свободным неизвестным придать какие-нибудь числовые значения, то получим решение линейной системы, называемое частным .

Пример . Установить совместность и найти общее решение системы

Решение . А = , С = .

Так как r(A) = r(C) = 2 (убедитесь в этом самостоятельно), то исходная система совместна и имеет бесчисленное множество решений (так как r < 4).