Компактная приемная кв антенна. Рамочная активная антенна своими руками. Автомобильная КВ — антенна DL1FDN

Даже представить себе невозможно, сколько антенн становится вокруг нас: мобильный телефон, телевизор, компьютер, беспроводной роутер, радиоприемники. Есть даже антенные устройства для экстрасенсов. Что такое антенна кв? Большинство людей, не связанных с радио, ответит, что это длинный провод или телескопический штырь. Чем он длиннее, тем лучше приём радиоволн. Доля истины в этом есть, но ее очень мало. Так каких же размеров должна быть антенна?

Важно! Размеры всех антенн должны быть соизмеримы с длиной радиоволны. Минимальная резонансная длина антенны равна половине длины волны.

Слово резонанс означает, что такая антенна может эффективно работать только в узкой полосе частот. Большинство антенн именно резонансные. Существуют и широкополосные антенны: за широкую полосу приходится расплачиваться эффективностью, а именно коэффициентом усиления.

Почему же работает стереотип, что чем длиннее кв антенны, тем они эффективнее? На самом деле это так, но до определённых пределов, так как это характерно только для средних и длинных волн. А с увеличением частоты размеры антенн можно уменьшить. На коротких волнах (это длины примерно от 160 до10 м) размеры антенн уже могут быть оптимизированы для эффективной работы.

Диполи

Самые простые и эффективные антенны – это полуволновые вибраторы, их ещё называют диполями. Запитываются они в центре: в разрыв диполей подаётся сигнал от генератора. Радиолюбительские портативные антенны могут работать как передающие, так и как приёмные. Правда, передающие антенны отличаются толстым кабелем, большими изоляторами – эти особенности позволяют им выдерживать мощность передатчиков.

Самое опасное место у диполя – это его концы, где создаются пучности напряжения. Максимум тока у диполя получается посередине. Но это не страшно, потому что пучности тока заземляют, тем самым, защищая приемники и передатчики от грозовых разрядов и статического электричества.

Обратите внимание! При работе с мощными радиопередатчиками можно получить удар от высокочастотных токов. Но ощущения будут не такими, как от удара от розетки. Удар будет ощущаться как ожог, без тряски в мышцах. Это получается из-за того, что высокочастотный ток течёт по поверхности кожи и вглубь тела не проникает. То есть от антенны можно подгореть снаружи, но внутри остаться нетронутым.

Многодиапазонная антенна

Довольно часто необходимо установитъ более одной антенны, но это не удается. И ведь помимо радиоантенны на один диапазон нужны антенны и на другие диапазоны. Решение задачи – использовать многодиапазонную антенну кв диапазона.

Обладая довольно приличными характеристиками, многодиапазонные вертикальные антенны могут решить антенную проблему для многих коротковолновиков. Они становятся очень популярными по ряду причин: нехватка пространства в стеснённых городских условиях, рост числа любительских радиодиапазонов, так называемая жизнь «на птичьих правах» при съёме квартиры.

Многодиапазонные вертикальные антенны не требуют много места для своей установки. Портативные конструкции можно расположить на балконе либо выйти с этой антенной куда-нибудь в близлежащий парк и поработать там в полевых условиях. Самые простые КВ антенны представляют собой одиночный провод с несимметричной запиткой.

Кто-то скажет укороченная антенна – это не то. Волна любит свой размер, поэтому кв антенна должна быть большой и эффективной. С этим можно согласиться, но чаще всего нет возможности для приобретения такого устройства.

Изучив интернет и посмотрев конструкции готовых изделий от разных фирм, приходишь к выводу: их очень много, и они очень дорогие. А всего в этих конструкциях провод для кв антенн и полтора метра штырька. Поэтому будет интересен, особенно начинающему, быстрый, простой и дешевый вариант самодельного изготовления эффективных кв антенн.

Вертикальная антенна (Ground Plane)

Ground Plane – это вертикальная антенна для радиолюбителей с длинным штырем, равным четверти длины волны. Но почему четверти, а не половине? Здесь недостающая половина диполя – это зеркальное отражение вертикального штыря от поверхности земли.

Но так как земля очень плохо проводит электричество, то в качестве нее используют либо листы металла, либо просто несколько проводов, раскинутых ромашкой. Их длину тоже выбирают равной четверти длины волны. Это и есть антенна Ground Plane, в переводе значит земляная площадка.

Большинство автомобильных антенн для радиоприёмников сделано по такому же принципу. Длина волны радиовещательной УКВ диапазона – это около трёх метров. Соответственно четверть полуволны будет 75 см. Второй луч диполя отражается в корпусе автомобиля. То есть такие конструкции должны принципиально монтироваться на металлической поверхности.

Коэффициент усиления антенны – отношение напряженности поля, получаемого от антенны, к напряженности поля в той же точке, но полученного от эталонного излучателя. Это отношение выражается в децибелах.

Рамочная магнитно-петлевая антенна

В тех случаях, когда простейшая антенна не может справиться с задачей, может использоваться вертикальная магнитно-петлевая антенна. Её можно сделать из дюралевого обруча. Если в горизонтальных рамочных антеннах на их технические показатели не оказывает влияние геометрическая форма и способ запитки, то на вертикальные антенны это оказывает влияние.

Такая антенна функционирует на трёх диапазонах: десять, двенадцать и пятнадцать метров. Перестраивается с помощью конденсатора, который должен быть надежно защищен от атмосферной влаги. Питание осуществляется любым кабелем 50-75 Ом, потому как согласующее устройство обеспечивает трансформацию выходного сопротивления передатчика в сопротивление антенны.

Укороченная дипольная антенна

Существуют укороченные антенны на 7 МГц, длина плеч которых составляет всего около трёх метров. Конструктив антенны включает в себя:

  • два плеча порядка трех метров;
  • изоляторы на краях;
  • веревочки для оттяжек;
  • катушка удлинительная;
  • небольшой шнур;
  • центральный узел.

Длина намотки катушки составляет 85 миллиметров и 140 намотанных вплотную витков. Точность здесь не так важна. То есть если витков будет больше, то это можно компенсировать длиной плеча антенны. Можно укорачивать и длину намотки, но это более сложно, придётся распаивать концы крепления.

Длина от края намотки катушки до центрального узла составляет порядка 40 сантиметров. В любом случае после изготовления антенну придётся настраивать подбором длины.

Вертикальная кв антенна своими руками

Как смастерить самому? Взять ненужную (или купить) недорогую удочку из карбона, 20-40-80. Наклеить на нее с одной стороны бумажную полоску с разметками точек. В отмеченные места вставить клипсы для подключения перемычек и шунтирования ненужной катушки. Таким образом, антенна будет переключаться с диапазона на диапазон. В заштрихованных областях будут намотаны укорачивающая катушка и указанное количество витков. В саму «удочку» вставляется штырь.

Также понадобятся материалы:

  • медный обмоточный провод используется диаметром 0,75 мм;
  • провод для противовеса диаметром 1,5 мм.

Штыревая антенна обязательно должна работать с противовесом, иначе она не будет эффективной. Итак, при наличии всех этих материалов останется только намотать проволочный бандаж на удилище так, чтобы получилась сначала большая катушка, затем меньше и ещё меньше. Процесс переключения диапазонов антенны: от 80 м до 2 м.

Выбор первого кв трансивера

При выборе коротковолнового трансивера начинающего радиолюбителя в первую очередь надо уделить внимание тому, как его купить, чтобы не ошибиться. Какие тут есть особенности? Существуют необычные узкоспециализированные радиостанции – это не подходит для первого трансивера. Не нужно выбирать носимые радиостанции, предназначенные для работы на ходу со штыревой антенной.

Такая радиостанция не удобна для того, чтобы:

  • ее использовать в качестве радиолюбительского обычного аппарата,
  • начать проводить связь;
  • научиться ориентироваться в радиолюбительском коротковолновом эфире.

Также есть радиостанции, которые программируются исключительно с компьютера.

Простейшие самодельные антенны

Для радиосвязи в полях бывает нужно связаться не только на расстояния в сотни километров, но и на небольшие расстояния с маленьких носимых радиостанций. Не всегда возможна устойчивая связь даже на небольшие расстояния, так как рельеф местности и крупные постройки могут мешать распространению сигнала. В таких случаях может помочь подъём антенны на небольшую высоту.

Высота даже такая, как 5-6 метров, может дать значительную прибавку в сигнале. И если с земли была слышимость очень плохая, то при подъёме антенны на несколько метров ситуация может значительно улучшиться. Конечно, установкой десятиметровой мачты и многоэлементной антенны однозначно улучшится и дальняя связь. Но мачты и антенны есть не всегда. В таких случаях выручают самодельные антенны, поднятые на высоту, например, на ветку дерева.

Немного слов о коротковолновиках

Коротковолновиками являются специалисты, обладающие знаниями в области электротехники, радиотехники, радиосвязи. К тому же они владеют квалификацией радиста, способны вести радиосвязь даже в таких условиях, в которых не всегда соглашаются работать профессионалы-радисты, а в случае необходимости способные быстро найти и устранить неисправность в своей радиостанции.

В основе работы коротковолновиков лежит коротковолновое любительство – установление двусторонней радиосвязи на коротких волнах. Самыми юными представителями коротковолновиков являются школьники.

Антенны мобильных телефонов

Ещё десяток лет тому назад из мобильных телефонов торчали небольшие пипочки. Сегодня ничего такого не наблюдается. Почему? Так как базовых станций в то время было мало, то повысить дальность связи можно было, только увеличив эффективность антенн. В общем, наличие полноразмерной антенны мобильного телефона в те времена повышало дальность его работы.

Сегодня, когда базовые станции натыканы через каждые сто метров, такой необходимости нет. К тому же с ростом поколений мобильной связи есть тенденция увеличения частоты. Вч диапазоны мобильной связи расширились до 2500 МГц. Это уже длина волны всего 12 см. И в корпус антенны можно вставить не укороченную антенну, а многоэлементную.

Без антенн в современной жизни не обойтись. Их разнообразие такое огромное, что о них можно рассказывать очень долго. Например, существуют рупорные, параболические, логопериодические, направленные антенны.

Видео

Малогабаритные многовитковые рамочные антенны обычно используются как приемные. Гарри Лителл SMOVPO представил вариант такой антенны пригодной не только для приема, но и для передачи на диапазонах 80 и 160 метров.

Конструкция антенны показана на рисунке выше. Многовитковое полотно рамки изготовлено из 20 метров литцендрата диаметром 2 мм. К концам этой рамки подсоединен КПЕ 3…30 пФ, которым можно настраивать антенну в резонанс в диапазоне от 3,5 до 3,8 МГц. Ось КПЕ желательно снабдить верньером, т.к. рабочая полоса частот антенны всего 10 кГц.

Согласование антенны с 50-омным фидером выполняется с помощью петли связи в виде прямоугольного треугольника с катетами по 800 мм, выполненной из того же литцендрата, что и антенное полотно.

С таким согласователем автор добился КСВ на резонансной частоте не более 1,6. Петля связи соединяется с фидером с помощью кабельного соединителя (см. самый верхний рисунок). Полотно антенны и петля связи размещены на крестовидных распорках из дерева (можно использовать бамбук, ПВХ трубы и т.д.). Для работы на 160-метровом диапазоне параллельно КПЕ подпаивают высоковольтный конденсатор на 410 пФ (например, параллельно соединив 360 и 51 пФ).

Автор отмечает, что данная рамочная антенна не является высокоэффективной DX-антенной, но ее хорошо использовать как вторую антенну на маленьком балконе, на полевых днях или в отпуске, т.к. она легко собирается и в транспортном виде занимает мало места. Являясь магнитной антенной, она может использоваться как хорошая приемная антенна на нижних КВ-диапазонах, особенно в городских условиях, богатых электрическими помехами, а как передающая — она все же является компромиссом.

В одной из своих книг в конце 80-х годов ХХ века, W6SAI, Bill Orr предложил простую антенну - 1 элементный квадрат, который устанавливался вертикально на одной мачте.Антенна по W6SAI была изготовлена с добавлением ВЧ дросселя. Квадрат выполнен на диапазон 20 метров (рис.1) и установлен вертикально на одной мачте.В продолжение последнего колена 10 метрового армейского телескопа вставлен сантиметров пятьдесят кусок стекстотекстолита, по форме ничем не отличающегося от верхнего колена телескопа, с отверстием наверху, что и является верхним изолятором. Получился квадрат у которого угол вверху, угол внизу и два угла на растяжках по бокам.С точки зрения эффективности это наиболее выгодный вариант расположения антенны, которая находится низко над землей. Точка запитки получилась около 2 метров от подстилающей поверхности. Узел подключения кабеля представляет из себя кусок толстого стеклотекстолита 100х100 мм, который прикреплен к мачте и служит изолятором.Периметр квадрата равен 1 длине волны и расчитывается по формуле: Lм=306,3\F мГц. Для частоты 14,178 мГц. (Lм=306,3\14,178) периметр будет равен 21,6 м, т.е. сторона квадрата = 5,4 м. Запитка с нижнего угла кабелем 75 ом длиной 3,49 метра, т.е. 0,25 длины волны.Этот отрезок кабеля является четвертьволновым трансформатором, трансформируя Rвх. антенны порядка 120 Ом, в зависимости от окружающих антенну предметов, в сопротивление близкое к 50 Ом. (46,87 Ом). Большая часть отрезка кабеля 75 Ом расположена строго вертикально, вдоль мачты. Далее, через ВЧ разъем идет основная линия передачи кабель 50 Ом длиной равной целому числу полуволн. В моем случае это отрезок 27,93 м, который является полуволновым повторителем.Такой способ запитки хорошо подходит для 50 омной техники, что сегодня в большинстве случаев соответствует R вых. ШПУ трансиверов и номинальному выходному сопротивлению усилителей мощности (трансиверов) с П-контуром на выходе.При расчете длины кабеля следует помнить о коэффициенте укорочения 0,66-0,68, в зависимости от типа пластиковой изоляции кабеля. Этим же 50 омным кабелем, рядом с упомянутым ВЧ разъемом мотается ВЧ дроссель. Его данные: 8-10 витков на оправке 150мм. Намотка виток к витку. Для антенн на НЧ диапазоны - 10 витков на оправке 250 мм. ВЧ дроссель устраняет кривизну диаграммы направленности антенны и является Запорным Дросселем для ВЧ токов движущихся по оплетке кабеля в направлении передатчика.Полоса пропускания антенны порядка 350-400 кГц. при КСВ близком к единице. За пределами полосы пропускания КСВ сильно растет. Поляризация антенны горизонтальная. Растяжки выполнены из провода диаметром 1,8 мм. разбитого изоляторами не реже чем через каждые 1-2 метра.Если изменить точку запитки квадрата, запитав его сбоку, в результате получим вертикальную поляризацию, более предпочтительную для DX. Кабель использовать тот же, что и при горизонтальной поляризации, т.е. к рамке идет четвертьволновый отрезок кабеля 75 Ом, (центральная жила кабеля подсоединяется к верхней половине квадрата, а оплетка к нижней), а затем кратно полуволне кабель 50 Ом.Резонансная частота рамки при смене точки запитки уйдет вверх примерно на 200 кГц. (на 14,4 мГц.), поэтому рамку придется несколько удлинить. Удлинительный провод, шлейф примерно 0,6-0,8 метра можно включить в нижний угол рамки (в бывшую точку запитки антенны). Для этого надо использовать отрезок двухпроводной линии порядка 30-40 см.Волновое сопротивление здесь большой роли не играет. На шлейфе запаивается перемычка по минимуму КСВ. Угол излучения будет 18 градусов, а не 42, как при горизонтальной поляризации. Мачту очень желательно заземлить у основания.

Антенна горизонтальная рамка

Делаем рамочную активную антенну для простых коротковолновых радиоприемников.

Есть ли возможность слушать эфир людям, у которых нет места для установки больших, полноразмерных антенн? Один из выходов- рамочная активная антенна, установленная прямо на столе, возле радиоприемника.

О практическом изготовлении подобной антенны и будет рассказано в этой статье…

Итак, малогабаритная рамочная активная антенна, это антенна состоящая из одного или нескольких витков медного провода (трубки) или даже коаксиального кабеля. В сети есть предостаточно примеров таких антенн.

Свою антенну я изготовил в виде вертикальной конструкции, которая устанавливается на столе возле радиоприемника. Рамочная активная антенна представляет собой этакую большую катушку индуктивности, изготовлена из медного провода диаметром 1,2 мм и содержит четыре витка. Количество витков выбрано наобум)). Диаметр изготовленной рамочной антенны примерно 23 см:

Для уменьшения собственной емкости витки антенны намотаны с шагом 10 мм. Для поддержания постоянства шага намотки, а также придания всей конструкции необходимой жесткости применены промежуточные распорки, изготовленные из стеклотекстолита толщиной 2 мм. Эскиз распорок приводится ниже:

Так выглядит промежуточная распорка в антенне:

Для придания устойчивости все этой конструкции применены опорные стойки, также изготовленные из стеклотекстолита,и которые служат как бы ножками антенны:

Медный провод продевается в соответствующие отверствия распорок и стоек, и фиксируется в них капелькой цианакрилатного клея.

Так выглядит стойка в изготовленном экземпляре антенны:

Общий вид изготовленной антенны:

Ради интереса подключил изготовленную рамочную антенну к антенному анализатору АА-54.

Обнаружился собственный резонанс антенны на частоте 14,4 МГц.

На фото ниже дисплей антенного анализатора АА-54 в момент измерения параметров рамочной антенны на частоте резонанса:

Как видим, импеданс антенны на частоте 14,4 МГц составляет 13,5 Ом, активное сопротивление-7,3 Ома, реактивное сопротивление относительно небольшое-минус 11,4 Ома и носит емкостной характер.

Индуктивность рамочной антенны (а она, собственно, и представляет собой катушку индуктивности) составила 7,2 мкГн.

Это все, что касается изготовления и параметров собственно рамочной антенны.

Но, поскольку антенна активная, значит в ее составе имеется и антенный усилитель.

При выборе схемы антенного усилителя руководствовался принципом подобрать что-либо не слишком заумное и сложное, и простое в изготовлении.

Гугл, как всегда, вывалил гору схем)) Не долго думая, выбрал одну из них, которая мне показалась интересной.

Схема этого антенного усилителя была опубликована еще где-то в начале 2000-х годов в одном из зарубежных журналов. Мне этот усилитель показался интересным с той точки зрения, что он имеет симметричный вход-как раз подходящий для моей рамочной антенны.

Принципиальная схема антенного усилителя:

В оригинале в этом усилителе были применены транзисторы серии BF- что-то типа BF4**.

В наличии таких не оказалось, поэтому собрал усилитель из того, что было под рукой-2N3904, 2N3906, S9013.

Собственно, усилительный каскад собран на транзисторах VT1VT2. На транзисторе VT3 собран эмиттерный повторитель для согласования высокого выходного сопротивления усилителя с относительно невысоким входным сопротивлением радиоприемников.

Усилитель питается напряжением 6 В. Режимы работы транзисторов устанавливаются подбором резистора R3. Напряжения на электродах транзисторов указаны на схеме.

Усилитель заработал практически сразу. Попробовал было установить в этом усилителе транзисторы КТ315,Кт361-но эффективность работы его сразу заметно ухудшилась, поэтому от такого варианта отказался. Антенный усилитель я собрал на монтажной плате, но, подготовил и печатную плату для него:

В качестве приемника для натурных испытаний активной рамочной антенны с усилителем был выбран

Подключив выход антенного усилителя ко входу приемника и включив питание, сразу отметил увеличение уровня шума. Это и не удивительно-антенный усилитель вносит свой вклад…

Последним этапом испытаний было подключение собственно рамочной антенны ко входу антенного усилителя и попробовать принять какие-либо сигналы с эфира..

И это удалось! Хорошо слышны много станций работающих с однополосной модуляцией на диапазоне 40 м. Понятно, что станции слышны не так громко как на полноразмерную антенну. Да и нельзя сравнивать нормальную антенну с рамочной антенной, находящейся рядом с приемником. Также при работе активной рамочной антенны наблюдается несколько повышенный уровень шумов. С этим нужно мириться- это плата за малогабаритность. Также желательно такую антенну располагать подальше от всевозможных источников помех- зарядки, энергосберегающие лампочки, сетевое оборудование и т. п.

Выводы : такая антенна вполне себе имеет право на жизнь, станций принимает достаточно много. Для тех, у кого нет возможности повесить большую, длинную антенну, это может быть выходом из ситуации.

Видео демонстрации работы рамочной активной антенны на диапазоне 7 МГц:

Эта антенна – моя первая разработка, удостоившаяся публикации в журнале «Радио». Было это много, много лет назад, в далеком 1988 г. В то время «Радио» был единственным журналом для радиолюбителей в СССР, очередь на публикацию составляла около трех лет. Так что эта рамочная антенна реально была разработана и изготовлена в 1985-86г. Точную дату сейчас уже не помню.

Хотя публикация была в разделе «Спортивная аппаратура», основная цель разработки была в улучшении качества, а чаше всего даже и просто возможности приема «вражеских голосов из-за бугра». В эпоху интернета и смартфонов трудно поверить, что радиоприем на КВ когда-то был единственным альтернативным источником информации, не прошедшей политическую цензуру.

Была целая сеть глушителей, которая набрасывалась, как стая волков, на Голос Америки, Радио Свобода и другие станции. Разобрать что-то в таких условиях на «ВЭФ» или «Океан» со штатной телескопической антенной было почти невозможно. А вот на эту рамку при благоприятном стечении обстоятельств удавалось кое-что принять.

В те годы даже само существование вещательных диапазонов 19, 16, 13 и 11 метров было чуть ли не государственной тайной. Об их существовании знали только счастливые обладатели импортной радиоприемной аппаратуры, ну и, разумеется, радиолюбители.

В таких условиях опубликовать описание антенны для приема вражеских голосов, на глушение которых государство тратило большие деньги, было абсолютно нереально. Поэтому я и сделал акцент на любительские диапазоны. Думаю, редакторы журнала прекрасно это понимали, но ведь уже началась перестройка… В общем, это была моя самая первая публикация в солидном радиотехническом журнале.

К моему большому удивлению, эта конструкция не забыта даже спустя 30 лет. Перепечатки из журнальной статьи можно найти на нескольких сайтах. При недавних экспериментах с SDR приемником мне потребовалась комнатная антенна. После долгих поисков я все-таки вернулся к этой своей старой схеме, ничего лучше найти не удалось. В антенной технике не так уж много новых схемотехнических решений.

Но, следует отметить, что в 80-х годах прошлого века самыми сильными источниками помех в городской квартире были тиристорные светорегуляторы (к счастью, их было немного). В наши дни ситуация изменилась к худшему. Импульсные блоки питания, цифровая техника, компьютеры и другие прелести, без которых сейчас никак не обойтись, привели к сильному загрязнению электромагнитной среды.

В результате на КВ прием на комнатную антенну стал почти невозможен. Если 30 лет назад я уверенно принимал в диапазоне 10 м на эту антенну в панельном железобетонном доме сигналы спутников серии «Радио», то сейчас смог принять только самые мощные вещательные станции.

Тем не менее, в сельской местности и на природе антенна может оказаться весьма полезной и эффективной. Поэтому я и размещаю ее описание на своем сайте. Первоначальный текст статьи и оригинальные рисунки, к сожалению, утеряны. Поэтому мне ничего не остается, как использовать материалы журнальной публикации, добавив к тексту несколько своих комментариев.

Коротковолновики-наблюдатели нередко не имеют возможности использовать наружную антенну и вынуждены в таких случаях довольствоваться комнатной. И если радиолюбитель живет в городской квартире, то антенна нередко оказывается как бы в экранированной камере, образованной арматурой бетона. Это не только ослабляет полезные сигналы, но и усиливает поля местных помех. В подобной ситуации целесообразно использовать антенну с минимальной чувствительностью к помехам, разместив ее в проеме окна или на балконе.

Один из возможных вариантов решения этой задачи - применение небольших рамочных антенн, периметр которых не превышает четверти длины волны. Такие антенны уже широко применяются в качестве приемно-передающих на любительских радиостанциях . Наличие ярко выраженного минимума в диаграмме направленности рамки позволяет в ряде случаев ослабить помехи. Изменяя положение антенны в вертикальной и горизонтальной плоскостях, можно улучшить качество приема даже в том случае, если сигнал и помеха приходят с одного направления, но под разными углами к горизонту. В некоторых случаях с помощью рамочной антенны, используя методы компонентной селекции , удается повысить помехозащищенность и реальную избирательность радиоприемника вблизи источников помех. Кроме того, так как такая антенна не требует применения заземления, уменьшается вероятность появления мультипликативного фона , а благодаря ее настройке в резонанс повышается избирательность приемника по зеркальному и другим побочным каналам.

Описываемая ниже антенна предназначена для работы с любым любительским приемником в диапазонах 3.5, 7, 14, 21 и 28 МГц. Благодаря минимуму на диаграмме направленности она ослабляет мешающий сигнал на 26 дБ на частоте 28 МГц и на 20 дБ на 3,5 МГц. Рамка диаметром 300 мм изготовлена из телевизионного коаксиального кабеля. Частотная зависимость ее добротности и действующей высоты показана на рис.1.

Чтобы повысить отношение сигнал/шум в приемной системе, рамка конструктивно объединена с усилителем, применение которого облегчает также ее симметрирование и согласование с приемником. Принципиальная схема усилителя показана на рис. 2. Диапазон его рабочих частот по уровню -3 дБ - не менее 3...30 МГц. Коэффициент усиления по напряжению - 12 дБ. Уровень шумов на выходе в полосе 3 кГц на нагрузке 75 Ом не превышает 0,3 мкВ. Динамический диапазон - не менее 90 дБ. Сопротивление нагрузки - 75 Ом. Усилитель питают от источника напряжением 9 В. Потребляемый ток - 8 мА.

Реально рамка перекрывала диапазон частот от примерно 5,8 до 30 МГц, т.е. вещательные и любительские диапазоны от 49 до 10 м. На 80 м одновитковая рамка диаметром 30 см, конечно же неэффективна. Не судите строго за приведенные выше цифры, они не претендуют на абсолютную точность, но близки к реальности. Еще на принципиальной схеме в журнале была опечатка, исток и сток VT1 поменяны местами. Здесь я эту опечатку исправил.

На рабочую частоту антенну настраивают сдвоенным конденсатором переменной емкости С5. При работе в диапазоне 3.5 и 7 МГц параллельно его секциям подключают дополнительные конденсаторы С1, С2 и С3, С4 соответственно.

Напряжение, наведенное в рамке WA1, поступает на вход усилителя, первый каскад которого выполнен по симметричной дифференциальной схеме на полевых транзисторах VT1 и VT2. Высокое входное сопротивление каскада практически не снижает добротность антенны, а также позволяет значительно ослабить прямой антенный эффект, искажающий диаграмму направленности. Дроссели L1 и L2 обеспечивают подавление низкочастотных наводок.

Выходной усилитель собран на биполярном транзисторе VT3, включенном по схеме с общим эмиттером, и охвачен глубокой параллельной отрицательной обратной связью по напряжению через цепь R2, C10. Это позволило получить равномерное усиление в широкой полосе частот, а также малые входное и выходное сопротивления усилителя .

Такое построение устройства обеспечило его хорошую линейность и согласование с коаксиальным кабелем, по которому сигнал подается на вход приемника. Питание на усилитель поступает с приемника по отдельному экранированному проводу.

Внешний вид антенны показан на рис. 3 в начале странички, размещение элементов в корпусе - на рис. 4.

Рамка 2 выполнена из коаксиального кабеля РК-75-4-15 и закреплена на двух крестообразно расположенных распорках 1 и 8 (см. чертежи на рис. 5) из любого диэлектрического материала (органическое стекло, фанера и т.п.) отрезками провода 9 диаметром 0,8 мм. В верхней части кабеля внешняя оболочка и экранная оплетка 11 удалены на расстоянии 10 мм (вид А). Внутреннюю оболочку 10 в этом месте обматывают изоляционной ПВХ-лентой (на рис. 4 не показана).

Корпус 7 и передняя стенка 4 изготовлена из листовой латуни толщиной 0,25 мм. Их чертежи приведены на рис. 5. Корпус можно спаять и из двустороннего фольгированного стеклотекстолита толщиной 1 мм. Экранная оплетка кабеля припаяна непосредственно к корпусу. Гайка 6 (М9), которая припаяна к торцу корпуса, используется для крепления антенны на поворотной головке малогабаритного фотоштатива. Такая конструкция позволяет легко изменять положение антенны в пространстве и отстраиваться от помех. Ручка настройки 5 изготовлена из эбонита.

Усилитель собран на печатной плате 3 размерами 75 х 25 мм из фольгированного стеклотекстолита толщиной 1 мм. Чертеж печатной платы и размещение деталей на ней приведены на рис. 6.

В настоящее время при изготовлении усилителя имеет смысл доработать плату под SMD компоненты

Дроссели L1 и L2 намотаны на кольцевых магнитопроводах типоразмера К7 х 4 х 2 из феррита с начальной магнитной проницаемостью 400...1000 и содержат по 25 витков провода ПЭЛШО 0,12. На таком же магнитопроводе выполнен трансформатор Т1. Каждая его обмотка содержит по 10 витков провода ПЭВ-2 0,17. Намотку ведут сразу тремя проводами, скрученными в жгут.

КПЕ С5 - сдвоенный блок КПТМ-4 емкостью 7...260 пФ от карманных радиоприемников "Нейва-401", "Сигнал-601". При соответствующей корректировке печатной платы можно использовать блок КПЕ от любого карманного приемника. Все остальные конденсаторы - КМ; С1-С4 желательно использовать с допуском не хуже +- 5 %. Выключатели SA1, SA2 - МТ3.

Транзисторы КП303Е можно заменить на КП303Г, КП303Д, КП302А, КП302Б. Необходимо подобрать пару с возможно близкими параметрами. Вместо транзистора ГТ311Ж можно использовать ГТ311Е, ГТ311И, КТ306, КТ316, КТ325 и другие современные СВЧ транзисторы.

Сейчас можно найти гораздо лучшие импортные транзисторы, с меньшим уровнем шумов. Марку аналогов знает Google.

Кабель, соединяющий устройство с приемником, - РК-75-2-11 или любой другой с волновым сопротивлением 75 Ом. Его длина не должна превышать 5 м. Питание на антенный усилитель подают от приемника по экранированному проводу любого типа.

Антенну начинают налаживать с установки указанных на принципиальной схеме режимов транзисторов подбором резисторов R1 и R3. Затем временно соединяют выводы конденсатора С5 с общим проводом, подключают усилитель к приемнику, работающему в диапазоне 28 МГц в режиме SSB, и, подбирая резистор R2, добиваются ситуации, когда шумы усилителя немного превышают шумы приемника. После этого с помощью ГИРа определяют резонансную частоту рамки при минимальной и максимальной емкости конденсатора С5 (контакты выключателей SA1 и SA2 разомкнуты).

Изменяя периметр рамки, устанавливают диапазон перекрываемых частот 14...30 МГц с 5- процентным запасом. Целесообразно вначале взять кабель длиной около 1,2 м, а затем симметрично укорачивать его с обоих концов. Если использован кабель РК-75-4-15 и конденсатор С5 емкостью 7...260 пФ, указанный диапазон частот перекрывается при периметре рамки около 95 см, что соответствует диаметру 30 см.

Затем замыкают контакты выключателя SA2. Ротор конденсатора С5 устанавливают в среднее положение и подбором конденсаторов С3 и С4 (они должны быть одного номинала) добиваются резонанса на частоте 7,05 МГц. В диапазоне 3,5 МГц антенну настраивают аналогичным путем, подбирая конденсаторы С1 и С2. При этом контакты SA2 должны быть разомкнуты, SA1 - замкнуты.

При замыкании SA1 антенна перекрывала диапазоны 25-31 м, при замыкании SA2 – 40 м, а при замыкании обоих тумблеров – 49 м. Номиналы конденсаторов, к сожалению, не помню. Посмотреть негде, оригинальный вариант антенны не сохранился. Но подобрать труда не составит.

Если ГИРа нет, настраивать можно непосредственно по сигналам любительских радиостанций. При резонансе громкость будет резко возрастать. Преимущества этой антенны наиболее полно проявляются в том случае, если сигналы радиостанций не проникают на вход приемника непосредственно из эфира .

Литература:
1. Степанов Б. Коротковолновые антенны. - В кн.: Радиоежегодник, 1985.-М.:ДОСААФ СССР, 1985.
2. Гречихин А. Компонентная селекция. - Радио, 1984, № 3, с. 18-20.
3. Егоров И. Мультипликативный фон в радиоприемниках. - Радио, 1980, №9, с.40-41.
4. Хабаров Ю.Е. Коротковолновая активная антенна. - М:Энергия, 1977, с.21-24.
5. Мишустин И.А. Повышение помехоустойчивости радиолюбительского приема. - М:Энергия, 1974.
6. Егоров И. О помехозащищенности бытовой радиоаппаратуры. - Радио, 1981, № 7-8, с. 30-31.