Ветряной источник энергии. Как выбрать ветряную электростанцию для дома. Преимущества ветряных электростанций

Энергетическая отрасль справляется со своей задачей достаточно уверенно, но масштабы нашей страны таковы, что полное обеспечение электроэнергией всех отдаленных или труднодоступных районов пока невозможно. Это связано с множеством факторов, преодолеть которые в нынешних условиях слишком дорого или технически недостижимо.

Поэтому все более пристальное внимание приходится обращать на альтернативные источники, способные удовлетворять потребности отсталых регионов без участия магистральных сетей. Перспективным направлением является ветроэнергетика, использующая дармовой .

Устройство и виды ветровых электростанций

Ветроэлектростанции (ВЭС) используют энергию ветра для выработки электротока. Крупные станции состоят из множества , объединенных в единую сеть и питающих большие массивы - поселки, города, регионы. Более мелкие способны обеспечивать небольшие жилые массивы или отдельные дома. Станции классифицируются по различным признакам, например, по функциональности:

  • мобильные,
  • стационарные.

По расположению:

  • прибрежные
  • офшорные
  • наземные
  • плавающие.

По типу конструкции:

  • роторные,
  • крыльчатные.

Наибольшее распространение в мире получили крыльчатные станции. Они имеют большую эффективность и способны производить достаточно большое количество электроэнергии, чтобы обеспечивать ею потребителей в масштабах целой энергетической отрасли. При этом, распространение таких станций имеет специфическую конфигурацию и встречается не повсеместно.

Принцип работы

Как уже говорилось, ВЭС имеют роторную или крыльчатую конструкцию. Роторные станции, как правило, имеют устройства с . Они во многом удобнее, чем крыльчатые, так как не издают при работе сильный шум и не требовательны к установке по направлению ветра. При этом, роторные конструкции менее эффективны и могут использоваться на небольших частных станциях.

Крыльчатые устройства способны выдавать максимальный эффект. Они используют получаемую энергию намного эффективнее, чем роторные образцы, но нуждаются в правильном ориентировании по отношению к потоку, что означает присутствие дополнительных приспособлений или оборудования.

Все виды действуют по одному принципу - поток ветра раскручивает подвижную часть, которая передает вращение на генератор, вследствие чего в системе образуется электроток. Он заряжает аккумуляторы, от которых питаются инверторы, преобразующие полученный ток в стандартное напряжение и частоту, подходящие для приборов потребления.

Для обеспечения большого числа потребителей отдельные ветрогенераторы соединяются в систему, образуя станции - ВЭС.

Преимущества и недостатки ветряных электростанций

К преимуществам ВЭС можно отнести:

  • независимость от ископаемых ресурсов;
  • используется абсолютно бесплатный источник энергии;
  • экологическая чистота методики - никакого вреда окружающей природе не наносится.

При этом, есть и недостатки:

  • неравномерность ветра создает определенные трудности в выработке энергии и вынуждает использовать большое число; аккумуляторных батарей;
  • ветряки издают шум при работе;
  • низок, увеличить его очень сложно;
  • стоимость оборудования и, соответственно, электроэнергии, намного выше, чем цена сетевого электричества;
  • окупаемость оборудования с ростом его мощности значительно снижается. .

Использование небольших станций способно обеспечить энергией ограниченное количество потребителей, поэтому для крупных населенных пунктов или регионов требуются большие устройства. При этом, ветряки большой мощности нуждаются в соответствующих потоках ветра и равномерности его движения, что для условий нашей страны не характерно. В этом кроется основная причина низкого распространения ветряков по сравнению с европейскими странами.

Экономическое обоснование строительства ВЭС

С точки зрения экономики, строительство ВЭС имеет смысл только при отсутствии других способов энергообеспечения. Оборудование стоит очень дорого, обслуживание и ремонт требуют постоянных расходов, а срок службы ограничен 20 годами, и это в условиях Европы. Для России этот срок можно снизить не менее, чем на треть. Поэтому использование ВЭС экономически малоэффективно.

С другой стороны, при полном отсутствии альтернативных вариантов или при наличии оптимальных условий, обеспечивающих качественную и равномерную работу ветряков, использование ВЭС становится вполне приемлемым способом энергообеспечения.

Важно! Речь идет именно о крупных станциях, снабжающих целые регионы. Ситуация с бытовыми или частными станциями выглядит более привлекательно.

Мощности промышленных станций

Промышленные ВЭС имеют весьма высокую мощность, способную обеспечивать крупные населенные пункты или регионы. Например, ВЭС «Ганьсу» в Китае имеет 7965 мВт, «Энеркон Е-126» выдает 7,58 мВт , и это еще не предел.

Следует сразу же оговориться, что речь идет о , другие модели вырабатывают намного меньше энергии. Тем не менее, объединенные в крупные станции, ветряки способны на производство вполне достаточного количества электроэнергии. Объединенные комплексы вырабатывают суммарную мощность в 400-500 мВт, что вполне может сравниться с производительностью ГЭС.

Мелкие станции имеют более скромные показатели и могут рассматриваться только как точечные источники, питающие ограниченное число потребителей.

Ведущие мировые производители

В число наиболее известных производителей ветрогенераторов и оборудования для ветроэнергетической отрасли входят компании:

  • Vestas,
  • Nordex,
  • Superwind,
  • Panasonic,
  • Ecotecnia,
  • Vergnet.

Российские производители пока не готовы конкурировать с этими фирмами, так как вопрос о создании качественных и производительных ветрогенераторов в России до сих пор не ставился достаточно плотно.

География применения

Наибольшее распространение ветроэнергетика получила на западном побережье Атлантики, в частности, в Германии. Там имеются наилучшие условия - ровные и сильные ветра, оптимальные климатические показатели. Но основной причиной широкого распространения ВЭС именно в этом регионе стало отсутствие возможностей для строительства гидроэлектростанций, вынудившее правительства стран этого региона использовать доступные методы получения электроэнергии. При этом, имеются установки и в балтийском регионе, в Дании, Голландии.

Россия пока отстает в этом вопросе, за прошедшее десятилетие в эксплуатацию сдан едва ли десяток ВЭС. Причина такого отставания кроется в большом развитии гидроэнергетики и отсутствии должных условий для эксплуатации промышленных ветроэнергетических станций. Тем не менее, отмечается рост производства небольших установок, способных обеспечивать энергией отдельные усадьбы.

Факты и заблуждения

Малое распространение ветроэнергетических установок и отсутствие опыта общения с ними породили массу заблуждений относительно свойств и воздействия ВЭС на организм человека. Так, широко распространено мнение о необычайно высоком уровне шума, производимого работающим ветрогенератором. Действительно, определенный шум имеется, но его уровень гораздо ниже, чем принято считать. Так, шум от промышленных моделей на расстоянии 200-300 м воспринимается на слух так же, как звук от работающего бытового холодильника.

Другая проблема, которую необоснованно раздувают несведущие люди - создание непреодолимых помех радио и телевизионным сигналам. Этот вопрос был решен раньше, чем о нем узнали пользователи - каждый мощный промышленный ветряк снабжен качественным фильтром радиопомех, способным полностью исключить влияние устройства на эфир.

Люди, живущие поблизости от турбин, будут постоянно находиться в зоне мерцания тени. Это термин, обозначающий некомфортное ощущение от мигающих световых проявлений. Вращающиеся лопасти создают такой эффект, но его значение сильно преувеличено. Даже самые чувствительные люди всегда могут попросту отвернуться от турбины, если случилось оказаться поблизости от нее.

Существуют и другие, надуманные и вполне реально существующие факты, касающиеся работы ВЭС, их воздействия на организм человека и окружающую природу. Част из них является обычными слухами, другая часть настолько преувеличена, что не заслуживает даже обсуждения. Ветроэнергетика - полноценная отрасль, способная решать вопросы энергообеспечения как в солидных масштабах, так и в пределах маленького дачного домика.

Частные ветряные электростанции

Для России наиболее актуальным вопросом является распространение именно небольших станций, обеспечивающих один дом или усадьбу. Строительство крупных ВЭС в климатических условиях нашей страны нецелесообразно и нерентабельно. Самая большая ценность ветрогенераторов кроется в создании возможности обеспечить энергией отсталые или отдаленные населенные пункты, где нет сетевого подключения.

Для таких районов применение небольших частных станций является оптимальным способом решения вопроса, так как работа ветряка не требует обеспечения топливом, устройство несложно и свободно поддается ремонту. Обеспечить такие регионы дополнительным оборудованием намного проще и дешевле, чем выделять большие средства на проведение линии электропередач, особенно, если речь идет о гористой местности. Небольшие ветряки способны вырабатывать достаточное количество энергии, не нуждаясь в расходах на содержание или топливо, что делает их весьма перспективными и привлекательными вариантами решения проблемы.

Обзор цен на популярные модели

Стоимость ветрогенераторов высока. Этот момент является самым труднопреодолимым для распространения ветроэнергетических технологий. Многие владельцы домов с удовольствием установили бы у себя на участке ветряки, но не имеют средств на их приобретение. Установка, способная обеспечить освещение участка, стоит около 100 тыс руб.

Более мощная конструкция, позволяющая снабдить электроэнергией коттедж, обойдется в 250 тыс.

ВЭС, способная обеспечить небольшое фермерское хозяйство, стоит около 500 тыс руб. И это еще не предел. При таких ценах ожидать быстрого распространения ветрогенераторов не приходится, поэтому вся надежда на появление отечественных моделей, способных решить вопрос дороговизны оборудования. Как вариант, можно купить относительно недорогую китайскую модель. Такие устройства не поддаются ремонту, являясь, по сути, одноразовыми, но их цена намного ниже, чем стоимость аналогичных по мощности западных образцов.

Как сделать ветряную электростанцию?

Дороговизна промышленных моделей вынуждает людей, способных пользоваться инструментами и обладающих определенными познаниями, создавать самодельные ветряки. Расходы на такое устройство несравнимы с тратами на заводские модели, а эффект, полученный от самоделок, зачастую превосходит показатели прославленных зарубежных изделий.

Для изготовления станции понадобится:

  • комплект оборудования - контроллер заряда, инвертор, аккумулятор;
  • генератор, способный работать на низких скоростях. Чаще всего используется автомобильный или тракторный генераторы, прошедшие некоторую модернизацию;
  • ветряк - вращающийся ротор, установленный на мачте или основании нужных размеров.


Оборудование для станции может быть собрано самостоятельно или приобретено в готовом виде. Изготовление генератора из готового устройства занимает один день (если иметь представление о том, что надо делать). Ветряк делается из подручных материалов - металлических бочек, листового металла и т.п.

Все элементы конструкции собираются воедино, система запускается, производится оценка ее характеристик и, если надо, вносятся необходимые изменения. Ветряк, собранный своими руками, ремонтируется совершенно без проблем, так как вся его конструкция известна мастеру, что называется, до последнего винтика.

Эксплуатация ВЭС не требует особых расходов, все вложения делаются единовременно. Срок службы системы рассчитывается на 20 лет, но при изготовлении своими руками он практически не ограничен, поскольку в любое время возможна модернизация или ремонт конструкции.

Мельница со станиной

Ветряные мельницы использовались для размола зерна в Персии уже в 200-м году до н. э. Мельницы такого типа были распространены в исламском мире и в 13-м веке принесены в Европу крестоносцами.

«Мельницы на козлах, так называемые немецкие мельницы, являлись до середины XVI в. единственно известными. Сильные бури могли опрокинуть такую мельницу вместе со станиной. В середине XVI столетия один фламандец нашел способ, посредством которого это опрокидывание мельницы делалось невозможным. В мельнице он ставил подвижной только крышу, и для того, чтобы поворачивать крылья по ветру, необходимо было повернуть лишь крышу, в то время как само здание мельницы было прочно укреплено на земле» (К. Маркс . «Машины: применение природных сил и науки»).

Масса козловой мельницы была ограниченной в связи с тем, что её приходилось поворачивать вручную. Поэтому была ограниченной и её производительность. Усовершенствованные мельницы получили название шатровых .

Современные методы генерации электроэнергии из энергии ветра

Мощности ветрогенераторов и их размеры
Параметр 1 МВт 2 МВт 2,3 МВт
Высота мачты 50 м - 60 м 80 м 80 м
Длина лопасти 26 м 37 м 40 м
Диаметр ротора 54 м 76 м 82,4 м
Вес ротора на оси 25 т 52 т 52 т
Полный вес машинного отделения 40 т 82 т 82,5 т
Источник: Параметры действующих ветрогенераторов. Пори, Финляндия

Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где ещё встречаются и двухлопастные. Наиболее эффективной конструкцией для территорий с малой скоростью ветровых потоков признаны ветрогенераторы с вертикальной осью вращения, т. н. роторные, или карусельного типа. Сейчас все больше производителей переходят на производство таких установок, так как далеко не все потребители живут на побережьях, а скорость континентальных ветров обычно находится в диапазоне от 3 до 12 м/с. В таком ветрорежиме эффективность вертикальной установки намного выше. Стоит отметить, что у вертикальных ветрогенераторов есть ещё несколько существенных преимуществ: они практически бесшумны, и не требуют совершенно никакого обслуживания, при сроке службы более 20 лет. Системы торможения, разработанные в последние годы, гарантируют стабильную работу даже при периодических шквальных порывах до 60 м/с.

Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. Но стоимость инвестиций по сравнению с сушей выше в 1,5 - 2 раза. В море, на расстоянии 10-12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции . Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров.

Могут использоваться и другие типы подводных фундаментов, а также плавающие основания. Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007 года . Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

5 июня 2009 года компании Siemens AG и норвежская Statoil объявили об установке первой в мире коммерческой плавающей ветроэнергетической турбины мощностью 2,3 МВт, производства Siemens Renewable Energy.

Статистика по использованию энергии ветра

На июнь 2012 года суммарные установленные мощности всех ветрогенераторов мира составили 254 ГВт. Среднее увеличение суммы мощностей всех ветрогенераторов в мире, начиная с 2009 года, составляет 38-40 гигаватт за год и обусловлено бурным развитием ветроэнергетики в США, Индии, КНР и ФРГ . Предполагаемая мощность ветряной энергетики к концу 2012 года по данным World Wind Energy Assosiation приблизится к значению в 273 ГВт .

В 2010 году в Европе было сконцентрировано 44 % установленных ветряных электростанций, в Азии - 31 %, в Северной Америке - 22 %.

Таблица: Суммарные установленные мощности, МВт, по странам мира 2005-2011 г. Данные Европейской ассоциации ветроэнергетики и GWEC .

Страна 2005 г., МВт. 2006 г., МВт. 2007 г., МВт. 2008 г. МВт. 2009 г. МВт. 2010 г. МВт. 2011 г. Мвт.
Китай 1260 2405 6050 12210 25104 41800 62733
США 9149 11603 16818 25170 35159 40200 46919
Германия 18428 20622 22247 23903 25777 27214 29060
Испания 10028 11615 15145 16754 19149 20676 21674
Индия 4430 6270 7580 9645 10833 13064 16084
Франция 757 1567 2454 3404 4492 5660 6800
Италия 1718 2123 2726 3736 4850 5797 6737
Великобритания 1353 1962 2389 3241 4051 5203 6540
Канада 683 1451 1846 2369 3319 4008 5265
Португалия 1022 1716 2150 2862 3535 3702 4083
Дания 3122 3136 3125 3180 3482 3752 3871
Швеция 510 571 788 1021 1560 2163 2907
Япония 1040 1394 1538 1880 2056 2304 2501
Нидерланды 1224 1558 1746 2225 2229 2237 2328
Австралия 579 817 817,3 1306 1668 2020 2224
Турция 20,1 50 146 433 801 1329 1799
Ирландия 496 746 805 1002 1260 1748 1631
Греция 573 746 871 985 1087 1208 1629
Польша 73 153 276 472 725 1107 1616
Бразилия 29 237 247,1 341 606 932 1509
Австрия 819 965 982 995 995 1011 1084
Бельгия 167,4 194 287 384 563 911 1078
Болгария 14 36 70 120 177 375 612
Норвегия 270 325 333 428 431 441 520
Венгрия 17,5 61 65 127 201 329 329
Чехия 29,5 54 116 150 192 215 217
Финляндия 82 86 110 140 146 197 197
Эстония 33 32 58 78 142 149 184
Литва 7 48 50 54 91 154 179
Украина 77,3 86 89 90 94 87 151
Россия 14 15,5 16,5 16,5 14 15,4

Таблица: Суммарные установленные мощности, МВт по данным WWEA .

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
7475 9663 13696 18039 24320 31164 39290 47686 59004 73904 93849 120791 157000 196630 237227

В то же время, по данным European Wind Energy Association, суммарная вырабатываемая мощность ветряной энергии в России за 2010 год составила 9 МВт, что приблизительно соответствует показателям Вьетнама (31 МВт), Уругвая (30,5 МВт), Ямайки (29,7 МВт), Гваделупы (20,5 МВт), Колумбии (20 МВт), Гайаны (13,5 МВт) и Кубы (11,7 МВт).

В 2011 году 28 % электроэнергии в Дании вырабатывалось из энергии ветра .

В 2009 году в Китае ветряные электростанции вырабатывали около 1,3 % суммарной выработки электроэнергии в стране. В КНР с 2006 года действует закон о возобновляемых источниках энергии. Предполагается, что к 2020 году мощности ветроэнергетики достигнут 80-100 ГВт.

Португалия и Испания в некоторые дни 2007 года из энергии ветра выработали около 20 % электроэнергии . 22 марта 2008 года в Испании из энергии ветра было выработано 40,8 % всей электроэнергии страны .

Ветроэнергетика в России

Технический потенциал ветровой энергии России оценивается свыше 50 000 млрд кВт·ч /год. Экономический потенциал составляет примерно 260 млрд кВт·ч /год, то есть около 30 процентов производства электроэнергии всеми электростанциями России.

Энергетические ветровые зоны в России расположены, в основном, на побережье и островах Северного Ледовитого океана от Кольского полуострова до Камчатки, в районах Нижней и Средней Волги и Дона, побережье Каспийского, Охотского, Баренцева, Балтийского, Чёрного и Азовского морей. Отдельные ветровые зоны расположены в Карелии, на Алтае, в Туве, на Байкале.

Максимальная средняя скорость ветра в этих районах приходится на осенне-зимний период - период наибольшей потребности в электроэнергии и тепле. Около 30 % экономического потенциала ветроэнергетики сосредоточено на Дальнем Востоке, 14 % - в Северном экономическом районе, около 16 % - в Западной и Восточной Сибири.

Суммарная установленная мощность ветровых электростанций в стране на 2009 год составляет 17-18 МВт.

Cамая крупная ветроэлектростанция России (5,1 МВт) расположена в районе посёлка Куликово Зеленоградского района Калининградской области . Зеленоградская ВЭУ состоит из 21 установки датской компании SЕАS Energi Service A.S.

Существуют проекты на разных стадиях проработки Ленинградской ВЭС 75 МВт Ленинградская область , Ейской ВЭС 72 МВт Краснодарский край , Калининградской морской ВЭС 50 МВт, Морской ВЭС 30 МВт Карелия , Приморской ВЭС 30 МВт Приморский край , Магаданской ВЭС 30 МВт Магаданская область , Чуйской ВЭС 24 МВт Республика Алтай , Усть-Камчатской ВДЭС 16 МВт Камчатская область , Новиковской ВДЭС 10 МВт Республика Коми , Дагестанской ВЭС 6 МВт Дагестан , Анапской ВЭС 5 МВт Краснодарский край , Новороссийской ВЭС 5 МВт Краснодарский край и Валаамской ВЭС 4 МВт Карелия .

Ветряной насос «Ромашка» производства СССР

Как пример реализации потенциала территорий Азовского моря можно указать Новоазовскую ВЭС , действующей на 2010 год мощностью в 21,8 МВт, установленную на украинском побережье Таганрогского залива .

Предпринимались попытки серийного выпуска ветроэнергетических установок для индивидуальных потребителей, например водоподъёмный агрегат «Ромашка ».

В последние годы увеличение мощностей происходит в основном за счет маломощных индивидуальных энергосистем, объём реализации которых составляет 250 ветроэнергетических установок (мощностью от 1 кВт до 5 кВт).

Перспективы

Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты.

В 2008 году Европейским Союзом установлена цель: к 2010 году установить ветрогенераторов на 40 тыс. МВт, а к 2020 году - 180 тыс. МВт. Согласно планам Евросоюза общее количество электрической энергии, которые выработают ветряные электростанции, составит 494,7 Тв-ч. .

Венесуэла за 5 лет с 2010 года планирует построить ветряных электростанций на 1500 МВт. .

Франция планирует к 2020 году построить ветряных электростанций на 25 000 МВт, из них 6 000 МВт - офшорных .

Экономические аспекты ветроэнергетики

Лопасти ветрогенератора на строительной площадке.

Основная часть стоимости ветроэнергии определяется первоначальными расходами на строительство сооружений ВЭУ (cтоимость 1 кВт установленной мощности ВЭУ ~$1000).

Экономия топлива

Ветряные генераторы в процессе эксплуатации не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти .

Себестоимость электроэнергии

Себестоимость электричества, производимого ветрогенераторами , зависит от скорости ветра .

Для сравнения: себестоимость электричества, производимого на угольных электростанциях США , 4,5 - 6 цента/кВт·ч. Средняя стоимость электричества в Китае 4 цента/кВт·ч.

При удвоении установленных мощностей ветрогенерации себестоимость производимого электричества падает на 15 %. Ожидается, что себестоимость ещё снизится на 35-40 % к концу г. В начале 80-х годов стоимость ветряного электричества в США составляла $0,38.

По оценкам Global Wind Energy Council к 2050 году мировая ветроэнергетика позволит сократить ежегодные выбросы СО 2 на 1,5 миллиарда тонн .

Влияние на климат

Ветрогенераторы изымают часть кинетической энергии движущихся воздушных масс, что приводит к снижению скорости их движения. При массовом использовании ветряков (например в Европе) это замедление теоретически может оказывать заметное влияние на локальные (и даже глобальные) климатические условия местности. В частности, снижение средней скорости ветров способно сделать климат региона чуть более континентальным за счет того, что медленно движущиеся воздушные массы успевают сильнее нагреться летом и охлаждаться зимой. Также отбор энергии у ветра может способствовать изменению влажностного режима прилегающей территории. Впрочем, учёные пока только разворачивают исследования в этой области, научные работы, анализирующие эти аспекты, не дают количественную оценку воздействия широкомасштабной ветряной энергетики на климат, однако позволяют заключить, что оно может быть не столь пренебрежимо малым, как полагали ранее .

Вентиляция городов

В современных городах выделяется большое количество вредных веществ, в том числе от промышленных предприятий и автомобилей. Естественная вентиляция городов происходит с помощью ветра. При этом описанное выше снижение скорости ветра из-за массового использования ВЭУ может снижать и вентилируемость городов. Особенно неприятные последствия это может вызвать в крупных мегаполисах: смог, повышение концентрации вредных веществ в воздухе и, как следствие, повышенная заболеваемость населения. В связи с этим установка ветряков вблизи крупных городов нежелательна .

Шум

Ветряные энергетические установки производят две разновидности шума:

  • механический шум - шум от работы механических и электрических компонентов (для современных ветроустановок практически отсутствует, но является значительным в ветроустановках старших моделей)
  • аэродинамический шум - шум от взаимодействия ветрового потока с лопастями установки (усиливается при прохождении лопасти мимо башни ветроустановки)

В настоящее время при определении уровня шума от ветроустановок пользуются только расчётными методами. Метод непосредственных измерений уровня шума не даёт информации о шумности ветроустановки, так как эффективное отделение шума ветроустановки от шума ветра в данный момент невозможно.

В непосредственной близости от ветрогенератора у оси ветроколеса уровень шума достаточно крупной ветроустановки может превышать 100 дБ.

Примером подобных конструктивных просчётов является ветрогенератор Гровиан. Из-за высокого уровня шума установка проработала около 100 часов и была демонтирована.

Как правило, жилые дома располагаются на расстоянии не менее 300 м от ветроустановок. На таком расстоянии вклад ветроустановки в инфразвуковые колебания уже не может быть выделен из фоновых колебаний.

Обледенение лопастей

При эксплуатации ветроустановок в зимний период при высокой влажности воздуха возможно образование ледяных наростов на лопастях. При пуске ветроустановки возможен разлёт льда на значительное расстояние. Как правило, на территории, на которой возможны случаи обледенения лопастей, устанавливаются предупредительные знаки на расстоянии 150 м от ветроустановки.

Кроме того, в случае легкого обледенения лопастей были отмечены случаи улучшения аэродинамических характеристик профиля.

Визуальное воздействие

Визуальное воздействие ветрогенераторов - субъективный фактор. Для улучшения эстетического вида ветряных установок во многих крупных фирмах работают профессиональные дизайнеры. Ландшафтные архитекторы привлекаются для визуального обоснования новых проектов.

В обзоре, выполненном датской фирмой AKF, стоимость воздействия шума и визуального восприятия от ветрогенераторов оценена менее 0,0012 евро на 1 кВт·ч. Обзор базировался на интервью, взятых у 342 человек, живущих поблизости от ветряных ферм. Жителей спрашивали, сколько они заплатили бы за то, чтобы избавиться от соседства с ветрогенераторами.

Использование земли

Турбины занимают только 1 % от всей территории ветряной фермы . На 99 % площади фермы возможно заниматься сельским хозяйством или другой деятельностью , что и происходит в таких густонаселённых странах, как Дания , Нидерланды , Германия . Фундамент ветроустановки, занимающий место около 10 м в диаметре, обычно полностью находится под землёй, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни. Земля сдаётся в аренду, что позволяет фермерам получать дополнительный доход. В США стоимость аренды земли под одной турбиной составляет $3000-$5000 в год.

Таблица: Удельная потребность в площади земельного участка для производства 1 млн кВт·ч электроэнергии

Вред, наносимый животным и птицам

Таблица: Вред, наносимый животным и птицам. Данные AWEA .

Популяции летучих мышей, живущие рядом с ВЭС на порядок более уязвимы, нежели популяции птиц. Возле концов лопастей ветрогенератора образуется область пониженного давления, и млекопитающее, попавшее в неё, получает баротравму. Более 90 % летучих мышей, найденных рядом с ветряками обнаруживают признаки внутреннего кровоизлияния. По объяснениям учёных, птицы имеют иное строение лёгких, а потому менее восприимчивы к резким перепадам давления и страдают только от непосредственного столкновения с лопастями ветряков .

Использование водных ресурсов

В отличие от традиционных тепловых электростанций, ветряные электростанции не используют воду, что позволяет существенно снизить нагрузку на водные ресурсы.

Радиопомехи

Металлические сооружения ветроустановки, особенно элементы в лопастях, могут вызвать значительные помехи в приёме радиосигнала . Чем крупнее ветроустановка, тем большие помехи она может создавать. В ряде случаев для решения проблемы приходится устанавливать дополнительные ретрансляторы .

См. также

Источники

  1. Global Wind Installations Boom, Up 31 % in 2009
  2. World Wind Energy Report 2010 (PDF). Архивировано
  3. Wind Power Increase in 2008 Exceeds 10-year Average Growth Rate . Worldwatch.org. Архивировано из первоисточника 26 августа 2011.
  4. Renewables . eirgrid.com. Архивировано из первоисточника 26 августа 2011.
  5. «Wind Energy Update » (PDF). Wind Engineering : 191–200.
  6. Impact of Wind Power Generation in Ireland on the Operation of Conventional Plant and the Economic Implications . eirgrid.com (February 2004). Архивировано из первоисточника 26 августа 2011. Проверено 22 ноября 2010.
  7. "Design and Operation of Power Systems with Large Amounts of Wind Power", IEA Wind Summary Paper (PDF). Архивировано из первоисточника 26 августа 2011.
  8. Claverton-Energy.com (28 августа 2009). Архивировано из первоисточника 26 августа 2011. Проверено 29 августа 2010.
  9. Alan Wyatt, Electric Power: Challenges and Choices, (1986), Book Press Ltd., Toronto, ISBN 0-920650-00-7 ,
  10. http://www.tuuliatlas.fi/tuulisuus/tuulisuus_4.html Пограничный слой в атмосфере
  11. http://www.tuuliatlas.fi/tuulivoima/index.html Размеры генераторов по годам
  12. http://www.hyotytuuli.fi/index.php?page=617d54bf53ca71f7983067d430c49b7 Параметры действующих ветрогенераторов. Пори, Финляндия
  13. Clipper Windpower Announces Groundbreaking for Offshore Wind Blade Factory
  14. Edward Milford BTM Wind Market Report 20 Июль 2010 г.
  15. Jorn Madslien . Floating wind turbine launched , BBC NEWS , London: BBC , стр. 5 June 2009. Проверено 23 декабря 2012.
  16. Annual installed global capacity 1996-2011
  17. Half-year report 2012
  18. US and China in race to the top of global wind industry
  19. http://www.gwec.net/fileadmin/documents/PressReleases/PR_2010/Annex%20stats%20PR%202009.pdf
  20. «Wind in power. 2011 European statistics »
  21. «Global Wind Statistics 2011 »
  22. Die Energiewende in Deutschland
  23. The Danish Market
  24. БИКИ, 25.07.09г., «На рынке ветроэнергетического оборудования КНР»
  25. Wind power - clean and reliable
  26. Испания получила рекордную долю электричества от ветра
  27. Использование энергии ветра в СССР \\ Бурят-Монгольская правда. № 109 (782) 18 мая 1926 года. стр. 7
  28. Энергетический портал. Вопросы производства, сохранения и переработки энергии
  29. http://www.riarealty.ru/ru/article/34636.html «РусГидро» определяет перспективные площадки в РФ для строительства ветроэлектростанций
  30. =1&cHash=EU will exceed renewable energy goal of 20 percent by 2020] (англ.) . Проверено 21 января 2011.
  31. Denmark aims to get 50% of all electricity from wind power
  32. EWEA: 180 GW of Wind Power Possible in Europe by 2020 | Renewable Energy World
  33. Lema, Adrian and Kristian Ruby, «Between fragmented authoritarianism and policy coordination: Creating a Chinese market for wind energy» , Energy Policy, Vol. 35, Isue 7, July 2007
  34. China’s Galloping Wind Market (англ.) . Проверено 21 января 2011.
  35. India to add 6,000 MW wind power by 2012 (англ.) . Архивировано из первоисточника 26 августа 2011. Проверено 21 января 2011.
  36. Venezuela, Dominican Republic Step into Wind 9 Сентябрь 2010 г.
  37. John Blau France Could Be Next Offshore Wind Powerhouse 26 Январь 2011 г.
  38. American Wind Energy Association. The Economics of Wind Energy
  39. Wind Energy and Wildlife: The Three C’s
  40. Wind Energy Could Reduce CO2 Emissions 10B Tons by 2020
  41. D.W.Keith,J.F.DeCarolis,D.C.Denkenberger,D.H.Lenschow,S.L.Malyshev,S.Pacala,P.J.Rasch The influence of large-scale wind power on global climate (англ.) // Proceedings of the National Academy of Sciences of the United States of America . - 2004. - В. 46.
  42. Dr.Yang(Missouri Western State University) A Conceptual Study of Negative Impact of Wind Farms to the Environment (англ.) // The Technology Interface Journal . - 2009. - В. 1.
  43. http://www.canwea.ca/images/uploads/File/CanWEA_Wind_Turbine_Sound_Study_-_Final.pdf
  44. Wind Energy in Cold Climates
  45. Wind energy Frequently Asked Questions
  46. Энергия ветра: мифы против фактов
  47. MEMBRANA | Мировые новости | Ветровые турбины убивают летучих мышей без единого прикосновения
  48. Устаревшие РЛС тормозят развитие ветровой энергетики 06 сентября 2010 года

Ветроэнергетика – это направление альтернативной энергетики, основанной на использовании возобновляемого источника энергии, которым является ветер. Кроме этого, в соответствии с состоянием развития на текущий момент и количеством производимой энергии, ветроэнергетика является отдельной отраслью производства различных видов энергии, таких как: электрическая, механическая, тепловая и т. д. Во всех случаях первичным источником служит кинетическая энергия ветра, путем использования различных механизмов, преобразуемая в требуемый вид энергии.

Ветроэнергетика в России

С начала ХХ века, с постепенным внедрением электричества в повседневную жизнь человека, использование ветровых установок было одним из способов получения электрической энергии. В разные годы эта отрасль переживала взлеты и падения, вызванные состоянием экономики страны, успехами в развитии технических устройств и потребностью в источниках энергии.

Россия — это большая страна, и благодаря своей значительной площади, а также расположением в различных географических и климатических зонах, обладает огромным потенциалом использования ветровой энергии. По данным экспертов, потенциал оценивается в более, чем в 50000 млрд.кВт.час электрической энергии в год, что может составлять до 30% производимой электроэнергии энергосистемой страны.

Возможность использования энергии ветра, в различных регионах, можно оценить, посмотрев на карту ветровых зон:

Из приведенной карты видно, что потенциально, использование ветровых установок, возможно на значительной территории страны. Наиболее благоприятные районы, это: прибрежные территории северных, Черного, Каспийского и Азовского морей, полуостров Камчатка, остов Сахалин, внутренняя территория страны от Волги и Дона, до Карелии, Алтая и Тувы.

В настоящее время развитию ветроэнергетики уделяется повышенной внимание, поэтому в последние годы, наблюдается динамика роста по вводу в эксплуатации энергетических мощностей, что видно из приведенной ниже диаграммы:

Использование ветровых генераторов, в разных регионах страны, получило неравномерное распространение, что обусловлено наличием определенных погодных условий, различных технических и финансовых возможностей регионов, а также потребностью в электрической энергии.

Так присутствие ветроэнергетических компаний в различных регионах выглядит следующим образом:

Суммарная установленная мощность ветровых электростанций составляет более 75,0 МВт, наиболее крупные это:

Расположенные в Крыму:

  • Донузлавская ВЭС, мощность установленных генераторов составляет 18,7 МВт;
  1. Останинская ВЭС, мощность установленных генераторов составляет 26,0 МВт;
  2. Тарханкутская ВЭС, мощность установленных генераторов составляет 15,9 МВт;
  3. Восточно-Крымская ВЭС, мощность установленных генераторов составляет 2,8 МВт.
  • В Калининградской области, Зеленоградская ВЭУ, мощность установленных генераторов составляет 5,1 МВт;
  • На Чукотке, Анадырская ВЭС, мощность установленных генераторов составляет 2,5 МВт;
  • В Республике Башкортостан, ВЭС «Тюпкильды», мощность установленных генераторов составляет 2,2 МВт;
  • В республике Калмыкия, ВЭС компании ООО «АЛТЭН», мощность установленных генераторов составляет 2,4 МВт;
  • В Мурманской области, ветродизельная электростанция, на мысе Сеть-Наволок, мощность установленных генераторов составляет 0,1 МВт;
  • На острове Беринга Командорских островов, ВЭС, мощностью установленных генераторов 1,2 МВт.

В различной стадии строительства, подготовки исходных данных и разработки технической документации, находятся следующие станции:

  • Заполярная ВДЭС (3,0 МВт) и Новиковская ВЭС (10,0 МВт) в Республике Коми;
  • Ленинградская ВЭС (75,0 МВт), в Ленинградской области;
  • Ейская ВЭС (72,0 МВт), Анапская ВЭС (5,0 МВт) и Новороссийская ВЭС (5,0 МВт), в Краснодарском крае;
  • Морская ВЭС (50,0 МВт), в Калининградской области;
  • Морская ВЭС (30,0 МВт) и Валаамская ВЭС (4,0 МВт) в Республике Карелия;
  • Приморская ВЭС (30,0 МВт), в Приморском крае;
  • Магаданская ВЭС (30,0 МВт), в Магаданской области;
  • Чуйская ВЭС (24,0 МВт), в Республике Алтай;
  • Усть-Камчатская ВДЭС (16,0 МВт), в Камчатской области;
  • Дагестанская ВЭС (6,0 МВт), в Дагестане;
  • Приютненская ВЭС (51,0 МВт), в Республике Калмыкия.

Государство уделяет внимание на развитие альтернативных источников энергии, принимаются программы по поддержке и стимулирования этой отрасли энергетики на федеральном и региональных уровнях.
В стране появляются новые организации, которые занимаются ветроэнергетикой, создаются отечественные образцы ветровых установок различной мощности и конструкций.

Ветроэнергетика в Мире

Технически развитые страны также не обходят своим вниманием альтернативные источники энергии. За последние годы, доля ветроэнергетики, в общем количестве вырабатываемой электрической энергии, в разных странах, на разных континентах, постоянно увеличивается, что видно на приведенной ниже диаграмме:

В странах Европы, Китае и США, правительства уделяют большое внимание этой отрасли энергетики. Предприятия, работающие в данной сфере, получают различные льготы, им оказывается финансовая помощь.

Лидером, среди европейских стран, по использованию ветровых установок, является Германия, за ней идет Испания и Дания. Распределение мощностей, в процентном соотношении, среди стран, приведено на ниже следующей диаграмме.

В настоящее время, наиболее крупные ветровые установки, работают в странах Европы, это:

  1. В Германии:
    Ветряные электростанции Германии производят более 8,0 % от всей произведённой электроэнергии. Установленная мощность ветровых генераторов превышает 45000,0 МВт.
  2. В Испании:
    Ветроэнергетика в Испании широко распространена как в частном секторе, так и при промышленном производстве электрической энергии. Доля производимого электричества ветровыми генераторами составляет более 20% от общего количества производимой электрической энергии.
  3. В Дании:
    Дания является первопроходцем, в деле использования энергии ветра для получения электрической энергии в промышленных масштабах. История ветроэнергетики этой страны начиналась в 70-х годах ХХ века, и по настоящее время, Дания является лидером по производству ветровых генераторов и их комплектующих.
    Ветроэнергетика Дании производит более 40% электрической энергии в общей доле производимого электричества в стране.

Если посмотреть на карту ветряных электростанций Европы, составленная агентством SETIS при Еврокомиссии, приведенную ниже, то отчетливо видно, что Германия является несомненным лидером из европейских стран, по количеству ветровых генераторов (места установки помечены синими кружками).
Из смонтированных в Европе, наиболее крупной является ветряная ферма Уитли (Whitelee). Она смонтирована в Шотландии и состоит из 140 турбин.

В прочих государствах нашей планеты использование ветровых установок выглядит следующим образом:

  • В США:
    В этой стране, ветроэнергетика как отрасль, развивается довольно быстро. Установленная мощность ветровых генераторов составляет более 75,0 ГВт. В общей доле вырабатываемой электрической энергии, доля ветроэнергетики составляет более 5,0 %.

Ветровые электростанции построены в 34 штатах, из наиболее энергоемкие, это в таких штатах как:

  1. Техас – установленная мощность ветровых генераторов более 14000,00 МВт;
  2. Калифорния и Айова — установленная мощность ветровых генераторов более 5000,00 МВт;
  3. Оклахома, Иллинойс, Орегон, Вашингтон, Миннесота — установленная мощность ветровых генераторов более 3000,00 МВт;
  4. Канзас и Колорадо — установленная мощность ветровых генераторов более 2000,00 МВт.
  5. Наиболее крупная станция Сан Горгонио Пасс, расположена в Калифорнии, способна вырабатывать более 600,0 МВ электрической энергии, в ее состав входит 3218 турбин.
    Построено более 50 заводов по производству ветровых установок и их комплектующих.

Перспективы развития

Принимая во внимание, что традиционные источники энергии имеют свойство заканчиваться, а их использование приводит к загрязнению атмосферы планеты, то все большее количество стран, принимают внутренние и межгосударственные соглашения о защите экологии и контролю за потреблением энергоресурсов. В развитие этой тенденции, использование возобновляемых источников энергии, к тому же являющихся экологическими чистыми, является очень актуальным.

Для стимулирования развития отрасли, в ряде стран разработаны направления деятельности, в этой области энергетики, это:

  1. Развитие морских ветропарков;
  2. Мотивация населения и промышленности в установке ветровых генераторов;
  3. Наращивание процента ветровой энергетики в общем энергопотреблении.

В связи с этим, развитие ветроэнергетики, как источника альтернативной энергии, постоянно продолжается и будет иметь тенденцию к ускорению этого процесса. Ярким примером таких разработок являются плавающие и парящие ветровые генераторы.

Плавающие ветровые генераторы – монтируются вдали от берега, на глубине 100 и более метров. Первые подобные устройства, были смонтированы в 2007 году, в Норвегии. В связи с тем, сто на поверхности моря всегда, за редким исключением бывает полный штиль, присутствует движение воздушных масс, то КПД установок смонтированных подобных образом, выше, чем у монтируемых на поверхности земли.

Парящие ветровые генераторы – представляют из себя надувную сферу, наполненную гелием, и турбины, расположенной по центру устройства.
К тому же конструкторы и разработчики не останавливаются на достигнутом, работы продолжаются в постоянном режиме.

Плюсы и минусы

К достоинствам, использования ветровых установок можно отнести следующие:

  • Это неисчерпаемый, возобновляемый самой природой, источник энергии, потому как пока светит солнце, будет и движение воздушных потоков, которые и являются первичной силой, благодаря которой, производится электрическая энергия.
  • Производство энергии при помощи воздушных масс, это экологически чистый процесс, не наносящий вреда окружающей среде.
  • Строительство объектов ветроэнергетики – это непродолжительное по времени мероприятие, поэтому быстрый монтаж ветровых установок, определяет относительно невысокую стоимость монтажных работ, в сравнении со строительством прочих объектов энергетики.

К недостаткам ветроэнергетики относятся:

  • КПД установок, в своей работе использующих энергию ветра, зависит от географического месторасположения, погодных условий, сезона и времени суток. Этот недостаток определяет возможность использования ветровых генераторов в том либо ином регионе планеты.
  • При устройстве генерирующих установок большой мощности, требуются значительные земельный участки, которые приходится выводить из общего оборота земель.
  • Потребность в начальных значительных затратах, наличие которых подразумевает инвестирование данной отрасли, на начальном этапе развития.
  • Потенциальная опасность для птиц и прочих летающих организмов.

Наличие отрицательных качеств, которыми обладает ветроэнергетика, не может перевесить количество положительных. С уверенностью можно констатировать, что такая область энергетики, как ветроэнергетика, будет развиваться и в дальнейшем.

Ветрогенератор – устройство для преобразования кинетической энергии ветра в механическую, а затем в электрическую. По количеству вырабатываемой электроэнергии такие устройства делятся на большие, мощностью более 100 кВт, и малые, мощностью менее 100 кВт.

Большие, мощностью до нескольких мегаватт, используются в качестве единичных элементов ветровых электростанций, которые передают энергию в магистральные электросети для большого числа потребителей. Размещаются ветровые электростанции на берегах морей, крупных водоёмов и в пустынных местностях. Обязательным атрибутом при их развёртывании является инфраструктура для передачи энергии в линии электропередач.

Отдельные малые ветрогенераторы, о которых пойдёт речь в этой статье, нашли применение для электроснабжения частных домов и автономных объектов различного назначения – телекоммуникационных вышек, уличного освещения, элементов систем управления дорожным движением. Устанавливаются они рядом с объектом и нередко дополняются или дизель-генератором.

Принцип работы

Ветрогенератор представляет собой комплекс из нескольких устройств:


Принцип работы устройства состоит в том, что напор (давление) ветра вращает ветроколесо, которое передаёт вращение на ротор генератора. Ротор генератора возбуждает переменный ток в обмотках статора генератора, который поступает на контроллер. Контроллер этот ток преобразует в постоянный и им заряжает аккумулятор.

Все потребители получают энергию от аккумулятора через инвертор (220 В) или напрямую (12, 24, 48 В – в зависимости от числа батарей). Напрямую энергия ветряка не передаётся потребителям, что связано с нестабильностью параметров получаемого им тока.

Типы ветряных электростанций

Существуют следующие критерии для классификации ветряных электростанций:

  1. Количество лопастей. Ветродвигатели с числом лопастей до 4 именуются малолопастными и быстроходными. С количеством лопастей от 4 и более многолопастными и тихоходными. Деление по этому критерию обусловлено тем, что чем меньше число лопастей, тем, при прочих равных условиях, ветродвигатель имеет большее число оборотов.
  2. Номинальная мощность. Критерий достаточно условен, но применяется следующая градация: до 15 кВт бытовые (для частных домов, портативные), 15-100 кВт полупромышленные (для небольших ферм, магазинов, насосных станций), 100 квт- единицы МВт промышленные – предназначены для генерации энергии, используемой большим количеством потребителей.
  3. Направление оси вращения. Этот критерий является самым основным, так как влияет на основные характеристики ветряка:
    • С горизонтальной осью вращения. Чаще всего двух или трёхлопастные, быстроходные. К достоинствам таких устройств относятся: быстроходность, а значит более простой генератор; высокий коэффициент использования энергии ветра и, как следствие, более высокий КПД; простота конструкции. К недостаткам относят: высокий уровень шума, необходимость высокой мачты для установки.
    • С вертикальной осью вращения. Известно много разновидностей по конструктивному исполнению – ветрогенераторы Савониуса, роторы Дарье, геликоидный ротор, многолопастные ветрогенераторы. По мнению автора статьи достоинства всех таких конструкций, весьма сомнительны. Эти устройства имеют сложную конструкцию, требуют сложного генератора, имеют низкий коэффициент использования энергии ветра (0,18-0,2 против 0,42 у горизонтальных). К достоинствам относят малый уровень шума, возможность установки на небольшой высоте.

Вопрос выбора

При выборе устройства необходимо ответить на следующие вопросы:

  • Необходимая мощность в кВт. Требуется оценить суммарное потребление в месяц и по этому критерию выбирать электростанцию;
  • Производитель оборудования. Необходимо чтобы продукция была сертифицирована для использования на территории РФ, тогда можно быть уверенным, что характеристики прибора соответствуют национальным нормам по уровню шума и электромагнитным помехам. Обратите внимание на срок гарантии и срок службы прибора, он должен быть не менее 15 лет. Узнайте о сервисном обслуживании и гарантийном ремонте оборудования. Не будет лишним узнать отзывы о производителе и продавце от других пользователей.
  • Требуемое место для установки ветряка. Исходите из ваших реальных возможностей. Если есть возможность для установки высокой мачты с горизонтальным типом устройства, то отдайте ему предпочтение. В противном случае рассмотрите вариант конструкции с вертикальной осью вращения.
  • Цена. Не всегда лучше то, что дороже. Здесь, как и везде, можно переплачивать за бренд или за возможности, совершенно вам ненужные. Чётко определите свои требования к устройству, не заказывайте ненужных компонентов.

Если есть возможность для установки высокой мачты с горизонтальным типом устройства, то отдайте ему предпочтение

Установка

При установке следует помнить, что в РФ нет запрета на установку ветровых электростанций мощностью ниже 75 кВт и налогами они не облагаются. Но всё же нелишним будет ознакомиться с нормативными актами по установке и использованию таких устройств для каждой конкретной местности.

На что стоит обратить внимание:

  • Допустимая высота установки мачты;
  • Наличие линий электропередач вблизи предполагаемого места установки;
  • Допустимый уровень шума в децибелах;
  • Наличие эфирных помех от работающей электростанции.

Допустимая высота регламентируется местными нормативными актами, а вот размещать мачту вблизи линий электропередач нельзя.

Для двух последних пунктов необходимо взять данные из технических характеристик электростанции. У сертифицированных в РФ поставщиков и производителей, данные характеристики соответствуют местному законодательству.

Неплохим шагом будет получение согласия на установку от соседей и обслуживающей территорию организации, при её наличии. Согласие необходимо получить в письменном виде.

Когда все формальности утрясены необходимо определить конкретное место установки мачты. Следует учесть, что эффективность будет выше, если поблизости нет деревьев, высоких домов и мачта стоит на возвышении. Выбирать место установки следует так, чтобы близлежащие строения и деревья не находились перед ветряком. Неправильным будет и располагать мачту на холме, перед обрывом.

Устанавливать мачту необходимо в строгом соответствии с инструкциями производителя. При необходимости следует привлечь квалифицированных специалистов и спецтехнику.


Стоимость

На рынке доступны ветровые электростанции для дома мощностью от 0,4 кВт до 75 кВт различных производителей. Разброс цен на устройства одной и той же мощности достаточно велик.

Рассмотрим таблицу:

Модель Мощность, кВт Цена, руб
EDS Group Condor Home 0,5 89600
EDS Group Condor Home 3 195400
EDS Group Condor Home 5 285000
EDS Group Condor Air 10 770000
EDS Group Condor Air 30 1790000
EDS Group Condor Air 50 2850000
ООО «Энергоспецсервис» 1 94000
BEKAR 1 171800
HY 400-L 0,4 66430
Энергосток 3 98000
Энергосток 5 220000
Энергосток 10 414000
Энергосток 30 961000
Энергосток 50 3107000

В чём же дело? А дело в том, что производители часто указывают цену только за часть необходимого комплекта оборудования. Рассмотрим для примера продаваемый компанией Энергосток ветряк на 2 кВт. На сайте значится цена 57600 руб., но зайдём в детальное описание товара.

А там есть цена полного комплекта оборудования: ветрогенератор, контроллер, инвертор, АКБ, мачта. И цена полного комплекта составит 176800 рублей. Отсюда вывод – обязательно уточняйте цену за весь комплект!

Средние цены на генераторы российского и китайского производства следующие: 1 кВт 100-120 т.р., 3 кВт – 200 т.р., 5кВт – 300 т.р., 10 кВт от полумиллиона, а мощные устройства 20 и более кВт будут стоить более миллиона рублей. Если покупать оборудование западного производителя или США, то цены будут выше на 20-30%.

Ветряные электростанции своими руками

Если вы собрались изготовить ветрогенератор, то стоит обратить внимание на ресурсы Сети, которые предполагают 2 подхода: первый заключается в том, чтобы собирать все элементы своими руками, а второй предполагает покупку готовых комплектующих.

При сборке наибольшую трудность вызывает изготовление ветроколеса. Изготовить лопасти для конструкции с горизонтальной осью вращения с требуемыми аэродинамическими характеристиками непросто. Здесь два выхода: или платить за изготовление мастерской с необходимыми инструментами и опытом, либо смотреть в сторону конструкции с вертикальной осью вращения, для которой лопасти можно изготовить из обычной бочки.

Генератор можно приобрести подержанный, использовать двигатель стиральной машины или промышленного . Существует большой выбор готовых генераторов и комплектующих для их сборки на основе ниодимовых магнитов.

Изготовление мачты - это очень ответственный этап, ведь от него зависит безопасность эксплуатации всей конструкции. Отнестись к нему нужно тщательно, доверив расчёты прочности конструкции специалисту.

Контроллеры, инверторы и аккумуляторные батареи лучше приобрести готовые.


Схема устройства ветряной электростанции для самостоятельного изготовления

Устанавливать или нет

При решении вопроса целесообразности установки ветряной электростанции нужно получить следующие исходные данные:


Алгоритм оценки окупаемости ветряка следующий:

  • По карте ветров и техническим характеристикам устройства определить вырабатываемую мощность для летнего и зимнего периодов или помесячно. Например, для рассмотренного выше устройства номиналом 2 кВт, вырабатываемая мощность при скорости 5 м/с составит 400 Вт;
  • По полученным данным определить годовую генерируемую мощность;
  • По стоимости киловатт-часа определить цену сгенерированной электроэнергии;
  • Поделить стоимость комплекта ветрогенератора на полученную цифру и получится окупаемость в годах.

Для внесения поправок в расчёт следует учитывать:

  • Аккумуляторные батареи придётся менять не реже одного раза в три года;
  • Срок службы современного ветрогенератора 20 лет;
  • Необходимо обслуживать устройство. Стоимость и сроки обслуживания необходимо уточнить у продавца оборудования;
  • Стоимость киловатт-часа растёт каждый год, за предыдущие 10 лет она увеличилась более чем в 3 раза. На 2017 запланирован рост тарифов минимум на 4%, так что можно исходить из этой цифры удорожания электроэнергии.

Если полученные цифры окупаемости не устраивают, но заиметь альтернативный источник энергии хочется или нет возможности подключения к централизованному электроснабжению, то следует рассмотреть варианты повышения эффективности ветряка и снижения затрат на его монтаж и обслуживание.

Возможны следующие варианты:

  • Установка нескольких устройств меньшей мощности вместо одного большого. Это снизит цену основного оборудования, уменьшит затраты на установку и обслуживание, а также повысит производительность за счёт того, что малые ветряки имеют больший КПД при низких скоростях ветра;
  • Установка специальной сетевой системы управления электроэнергией , совмещённой с центральной системой электроснабжения. Такие устройства сегодня можно найти в продаже.

  • для электроснабжения даже большого частного дома достаточно мощности 10 кВт;
  • оцените возможности электростанции по генерации электроэнергии в вашей местности;
  • выбирайте правильное место установки ветрогенератора;
  • контролируйте комплектность покупаемого оборудования;
  • используйте пути повышения скорости окупаемости оборудования;
  • если дорого покупать – сделай сам, это не так сложно.

Традиционные источники энергии являются не очень безопасными, негативно влияют на окружающую среду. В природе существуют такие природные ресурсы, которые называются возобновляемыми, и они позволяют получить достаточное количество энергоресурсов. Одним из таких богатств считается ветер. В результате переработке воздушных масс можно получить одну из форм энергии:

  • электрическую;
  • тепловую;
  • механическую.

Эта энергия может использоваться в быту для различных нужд. Обычно для преобразования ветра используются ветрогенераторы, паруса и ветряные мельницы.

Особенности ветроэнергетики

В энергетической сфере сейчас происходят глобальные изменения. Человечество осознало опасность ядерной, атомной и гидроэнергетики, и сейчас ведутся разработки станций, на которых используются возобновляемые источники энергии. По прогнозам экспертов к 2020 году не менее 20% от всего количества энергоресурсов возобновляемых источников будет составлять энергия, полученная с помощью ветра.

Польза ветроэнергетики заключается в следующем:

  • энергия ветра позволяет сберечь окружающую среду;
  • сокращается использование традиционных энергоресурсов;
  • уменьшается количество вредных выбросов в биосферу;
  • при работе агрегатов, вырабатывающих энергию, не появляется смог;
  • использование ветровой энергии исключает возможность ;
  • отсутствие радиоактивных отходов.

Это лишь небольшой перечень достоинств использования энергии ветра. Стоит учесть, что устанавливать ветряные мельницы вблизи населенных пунктов запрещается, поэтому их чаще можно встретить на открытых ландшафтах степей и полей. В результате определенные территории будут абсолютно непригодными для проживания людей. Также эксперты отмечают, что при массовой эксплуатации ветряков возникнут некоторые климатические изменения. Например, из-за изменения воздушных масс, климат может стать сухим.

Перспективы ветровой энергетики

Несмотря на колоссальную пользу энергии ветра, экологичности ветровой энергетики, еще рано говорить о массовом строительстве ветровых парков. Среди стран, которые уже используют данный источник энергии, стоит назвать США, Данию, Германию, Испанию, Индию, Италию, Великобританию, Китай, Нидерланды и Японию. В других странах энергия ветра используется, но в меньших масштабах, ветроэнергетика только развивается, но это перспективное направление экономики, которое принесет не только финансовую выгоду, но и поможет уменьшить негативное влияние на экологию.