Очистные сооружения: что такое очистка сточных вод? Подготовка питьевой воды Технология очистки питьевой воды на очистных сооружениях

Рублевская станция водоподготовки находится недалеко от Москвы, в паре километров от МКАДа, на северо-западе. Расположена она прямо на берегу Москвы-реки, откуда и забирает воду для очистки.

Чуть выше по течению Москва-реки располагается Рублевская плотина.

Плотина была построена в начале 30х годов. В настоящее время используется для регулирования уровня Москвы-реки, для того, чтобы мог функционировать водозабор Западной станции водоподготовки, который находится на несколько километров выше по течению.

Поднимемся наверх:

На плотине используется вальцовая схема - затвор двигается по наклонным направляющим в нишах с помощью цепей. Приводы механизма находятся сверху в будке.

Выше по течению находятся водозаборные каналы, вода с которых, как я понял, поступает на Черепковские очистные сооружения, находящиеся неподалеку от самой станции и являющиеся ее частью.

Иногда, для забора проб воды из реки Мосводоканал использует катер на воздушной подушке. Пробы забираются ежедневно по несколько раз в нескольких точках. Нужны они для определения состава воды и подбора параметров технологических процессов при ее очистке. В зависимости от погоды, времени года и прочих факторов состав воды сильно меняется и за этим постоянно следят.

Кроме того пробы воды из водопровода отбирают на выходе из станции и во множестве точек по всему городу, как сами Мосводоканаловцы, так и независимые организации.

Также имеется ГЭС небольшой мощности, включающая три агрегата.

В настоящее время она остановлена и выведена из эксплуатации. Заменять оборудование на новое - экономически не целесообразно.

Пора выдвигаться на саму станцию водоподготовки! Первое куда пойдем - насосная станция первого подъема. Она закачивает воду из Москвы-реки и поднимает ее вверх, на уровень самой станции, которая находится на правом, высоком, берегу реки. Заходим в здание, поначалу обстановка вполне обычная - светлые коридоры, информационные стенды. Неожиданно встречается квадратный проем в полу, под которым огромное пустое пространство!

Впрочем к нему мы еще вернемся, а пока пойдем дальше. Огромный зал с квадратными бассейнами, насколько я понял это что-то типа приемных камер, в которые поступает вода из реки. Сама река находится справа, за окнами. А насосы закачивающие воду - слева внизу за стенкой.

Снаружи здание выглядит так:

Фото с сайта Мосводоканала.

Тут же установлено оборудование, похоже это автоматическая станция анализа параметров воды.

Все сооружения на станции имеют весьма причудливую конфигурацию - много уровней, всевозможные лесенки, спуски, баки, и трубы-трубы-трубы.

Какой-то насос.

Спускаемся вниз, примерно на 16 метров и попадаем в машинный зал. Тут установлено 11 (три запасных) высоковольтных мотора, приводящих в движение центробежные насосы уровнем ниже.

Один из запасных моторов:

Для любителей шильдиков:)

Вода снизу закачивается в огромные трубы, которые вертикально проходят через зал.

Все электротехническое оборудование на станции выглядит очень аккуратно и современно.

Красавцы:)

Заглянем вниз и увидим улитку! Каждый такой насос имеет производительность 10 000 м 3 в час. Для примера, он мог бы полностью, от пола до потолка заполнить водой обычную трехкомнатную квартиру всего за минуту.

Спустимся на уровень ниже. Тут гораздо прохладнее. Этот уровень находится ниже уровня Москва-реки.

Не очищенная вода из реки по трубам поступает в блок очистных сооружений:

Таких блоков на станции несколько. Но перед тем как пойти туда, сначала посетим другое здание, называемое "Цех производства озона". Озон, он же O 3 используется для обеззараживания воды и удаления из нее вредных примесей, с помощью метода озоносорбции. Данная технология вводится Мосводоканалом в последние годы.

Для получения озона используется следующий техпроцесс: воздух с помощью компрессоров(справа на фото) нагнетается под давлением и попадает в охладители(слева на фото).

В охладителе воздух охлаждается в два этапа с использованием воды.

Затем подается на осушители.

Осушитель представляет из себя две емкости содержащие смесь поглощающую влагу. В то время как одна емкость используется, вторая восстанавливает свои свойства.

С обратной стороны:

Оборудование управляется с помощью графических сенсорных экранов.

Далее подготовленный холодный и сухой воздух поступает в генераторы озона. Генератор озона представляет собой большую бочку, внутри которой расположено множество трубок-электродов, на которые подается большое напряжение.

Так выглядит одна трубка(в каждом генераторе из десятки):

Ершик внутри трубки:)

Через стеклянное окошко можно посмотреть на весьма красивый процесс получения озона:

Пришло время осмотреть блок очистных сооружений. Заходим внутрь и долго поднимаемся по лестнице, в результате оказываемся на мостике в огромном зале.

Тут самое время рассказать про технологию очистки воды. Сразу скажу, что я не специалист и процесс понял лишь в общих чертах без особых подробностей.

После того как вода поднимается из реки, она попадает в смеситель - конструкция из нескольких последовательных бассейнов. Там в нее поочередно добавляют разные вещества. В первую очередь - порошковый активированный уголь (ПАУ). Затем в воду добавляют коагулянт (полиоксихлорид алюминия) – который заставляет мелкие частицы собираться в более крупные комки. Затем вводится специальное вещество называемое флокулянт - в результате чего примеси превращаются в хлопья. Затем вода попадает в отстойники, где все примеси осаждаются, после чего проходит через песчаные и угольные фильтры. В последнее время добавился и еще один этап - озоносорбция, но об этом ниже.

Все основные реагенты применяющиеся на станции (кроме жидкого хлора) в один ряд:

На фотографии насколько я понял - зал смесителя, найдите людей в кадре:)

Всевозможные трубы, резервуары и мостики. В отличие от канализационных очистных сооружений тут все гораздо запутаннее и не так интуитивно понятно, кроме того, если там большая часть процессов происходит на улице, то подготовка воды происходит полностью в помещениях.

Этот зал является лишь малой частью огромного здания. Частично продолжение можно разглядеть в проемах внизу, туда отправимся позже.

Слева стоят какие-то насосы, справа огромные баки с углем.

Там же очередная стойка с оборудованием измеряющим какие-то характеристики воды.

Озон является крайне опасным газом (первая, высшая категория опасности). Сильнейший окислитель, вдыхание которого может привести к летальному исходу. Поэтому процесс озонирования происходит в специальных закрытых бассейнах.

Всевозможная измерительная аппаратура и трубопроводы. По бокам - иллюминаторы, через которые можно посмотреть на процесс, сверху - прожекторы, которые также светят через стекла.

Внутри водичка очень активно бурлит.

Отработанный озон поступает к деструктору озона представляющим собой нагреватель и катализаторы, там озон полностью разлагается.

Переходим к фильтрам. На табло показывается скорость промывки(продувки?) фильтров. Фильтры со временем загрязняются и их очищают.

Фильтры представляют собой длинные резервуары наполненные гранулированным активированным углем(ГАУ) и мелким песком по специальной схеме.

Фильтры находятся в отдельном изолированном от внешнего мира пространстве, за стеклом.

Можно оценить масштаб блока. Фотография сделана посередине, если взглянуть назад, то можно увидеть то же самое.

В результате всех этапов очистки вода становится пригодной для питья и удовлетворяет всем нормам. Однако, запускать такую воду в город нельзя. Дело в том, что протяженность водопроводных сетей Москвы - тысячи километров. Есть участки с плохой циркуляцией, закрытые ответвления и т.п. Как результат - в воде могут начать размножаться микроорганизмы. Чтобы это избежать воду хлорируют. Раньше это делали путем добавления жидкого хлора. Однако он является крайне опасным реагентом (в первую очередь с точки зрения производства, перевозки и хранения), поэтому сейчас Мосводоканал активно переходит на гипохлорит натрия, который гораздо менее опасен. Для его хранения пару лет назад был построен специальный склад (привет HALF-LIFE).

Опять же все автоматизировано.

И компьютеризировано.

В конце концов, вода попадает в огромные подземные резервуары на территории станции. Эти резервуары наполняются и опустошаются в течение суток. Дело в том, что станция работает с более менее постоянной производительностью, в то время как потребление в течение дня очень сильно меняется - утром и вечером оно крайне высокое, ночью очень низкое. Резервуары служат некоторым аккумулятором воды - ночью они наполняются чистой водой, а днем она забирается из них.

Управляется вся станция из центральной диспетчерской. 24 часа в сутки дежурят два человека. У каждого рабочее место с тремя мониторами. Если я правильно запомнил - один диспетчер следит за процессом очистки воды, второй - за всем остальным.

На экранах отображается огромное количество всевозможных параметров и графиков. Наверняка эти данные берутся в том числе с тех приборов, которые были выше на фотографиях.

Крайне важная и ответственная работа! Кстати говоря, на станции практически не было замечено работников. Весь процесс очень сильно автоматизирован.

В заключение - немного сюрра в здании диспетчерской.

Конструкция декоративного характера.

Бонус! Одно из старых зданий, оставшихся со времен самой первой станции. Когда-то она вся была кирпичной и все сооружения выглядели примерно так, однако сейчас все полностью перестроено, сохранилось лишь несколько строений. Кстати, вода в те времена подавалась в город с помощью паровых машин! Чуть подробнее можно почитать (и посмотреть старые фото) в моем

Вода на современных водопроводных станциях подвергается многоступенчатой очистке для удаления твердых примесей, волокон, коллоидных взвесей, микроорганизмов, для улучшения органолептических свойств. Максимально качественный результат достигается сочетанием двух технологий: механической фильтрации и химической обработки.

Особенности технологий очистки

Механическая фильтрация . Первый этап водоподготовки позволяет удалить из среды видимые твердые и волокнистые включения: песок, ржавчину и т. д. При механической обработке воду последовательно пропускают через ряд фильтров с уменьшающимся размером ячеек.

Химическая обработка . Технология используется для приведения химического состава и качественных показателей воды к норме. В зависимости от первоначальных характеристик среды обработка может включать несколько этапов: отстаивание, обеззараживание, коагуляцию, умягчение, осветление, аэрацию, деминерализацию, фильтрацию.

Методы химической очистки воды на водопроводных станциях

Отстаивание

На водопроводных станциях устанавливают специальные резервуары с переливным механизмом или устраивают железобетонные отстойники на глубине 4–5 м. Скорость движения воды внутри емкости поддерживается на минимальном уровне, причем верхние слои перетекают быстрее, чем нижние. В таких условиях тяжелые частицы оседают на дно резервуара и удаляются из системы через отводные каналы. В среднем на отстаивание воды уходит 5–8 часов. За это время оседает до 70 % тяжелых примесей.

Обеззараживание

Технология очистки направлена на удаление из воды опасных микроорганизмов. Установки обеззараживания присутствуют во всех без исключения водопроводных системах. Дезинфекция воды может выполняться облучением или добавлением химических реагентов. Несмотря на появление современных технологий, использование обеззаражи.вающих средств на основе хлора является предпочтительным. Причина популярности реагентов заключается в хорошей растворимости хлорсодержащих соединений в воде, способности сохранять активность в подвижной среде, оказывать дезинфицирующее действие на внутренние стенки трубопровода.

Коагуляция

Технология позволяет удалять растворенные примеси, которые не улавливаются фильтрующими сетками. В качестве коагулянтов для воды используют полиоксихлорид или сульфат алюминия, калийно-алюминиевые квасцы. Реагенты вызывают коагуляцию, то есть слипание органических примесей, крупных белковых молекул, планктона, находящегося во взвешенном состоянии. В воде образуются крупные тяжелые хлопья, которые выпадают в осадок, увлекая за собой органические взвеси, некоторые микроорганизмы. Для ускорения реакции на станциях очистки используют флокулянты. Мягкую воду подщелачивают содой или известью для быстрого образования хлопьев.

Умягчение

Содержание соединений кальция и магния (солей жесткости) в воде строго регламентировано. Для удаления примесей используют фильтры с катионными или анионными ионообменными смолами. Когда вода проходит через загрузку, ионы жесткости замещаются водородом или натрием, безопасным для здоровья человека и водопроводной системы. Поглощающая способность смолы восстанавливается обратной промывкой, но емкость уменьшается с каждым разом. Ввиду высокой стоимости материалов такая технология умягчения воды используется в основном на локальных очистных сооружениях.

Осветление

Методику используют для очистки поверхностных вод, загрязненных фульвокислотами, гуминовыми кислотами, органическими примесями. Жидкость из таких источников часто имеет характерный цвет, привкус, зеленовато-коричневый оттенок. На первом этапе воду направляют в смесительную камеру с добавлением химического коагулянта и хлорсодержащего реагента. Хлор разрушает органические включения, а коагулянты выводят их в осадок.

Аэрация

Технология используется для удаления из воды двухвалентного железа, марганца, других окисляющихся примесей. При напорной аэрации жидкость барботируется воздушной смесью. Кислород растворяется в воде, окисляет газы и соли металлов, выводя их из среды в виде осадка или нерастворимых летучих веществ. Аэрационная колонна наполняется жидкостью не полностью. Воздушная подушка над поверхностью воды смягчает гидроудары и увеличивает площадь контакта с воздухом.

Безнапорная аэрация требует более простого оборудования и проводится в специальных душевальных установках. Внутри камеры вода распыляется через эжекторы для увеличения площади контакта с воздухом. При высоком содержании железа аэрационные комплексы могут дополняться озонирующим оборудованием или фильтрующими кассетами.

Деминерализация

Технология используется для подготовки воды в промышленных водопроводных системах. Деминерализация выводит избыточное железо, кальций, натрий, медь, марганец и другие катионы и анионы из среды, увеличивая срок службы технологических трубопроводов и оборудования. Для очистки воды используют технологию обратного осмоса, электродиализа, дистилляции или деионизации.

Фильтрация

Воду фильтруют пропусканием через угольные фильтры, или углеванием. Сорбент поглощает до 95 % примесей, как химических, так и биологических. До недавнего времени для фильтрации воды на водопроводных станциях использовались прессованные картриджи, но их регенерация является достаточно дорогостоящим процессом. Современные комплексы включают порошкообразную или гранулированную угольную загрузку, которую просто высыпают в емкость. При перемешивании с водой уголь активно удаляет примеси, не изменяя своего агрегатного состояния. Технология более дешевая, но такая же эффективная, как блочные фильтры. Угольная загрузка выводит из воды тяжелые металлы, органику, поверхностно-активные вещества. Технология может применяться на очистных сооружениях любого типа.

Воду какого качества получает потребитель

Вода становится питьевой только после прохождения полного комплекса очистных мероприятий. Затем она поступает в городские коммуникации для доставки потребителю.

Необходимо учесть, что даже при полном соответствии параметров воды на очистных сооружениях санитарно-гигиеническим нормам в точках водоразбора ее качество может быть значительно ниже. Причина в старых, проржавевших коммуникациях. Вода загрязняется при прохождении по трубопроводу. Поэтому установка дополнительных фильтров в квартирах , частных домах и на предприятиях остается актуальным вопросом. Грамотно подобранное оборудование гарантирует соответствие воды нормативным требованиям и даже делает ее полезной для здоровья.

В связи с тем, что объемы водопотребления непрерывно растут, а подземные водные источники являются ограниченными, недостачу воды восполняют за счет поверхностных водоемов.
Качество питьевой воды должно соответствовать высоким требованиям стандарта. А от качества воды, которая используется в промышленных целях, зависит нормальная и стабильная работа устройств и оборудования. Поэтому и эта вода должна быть хорошо очищена, и соответствовать стандартам.

Но в большинстве случаев, качество воды является низким, а проблема очистки воды сегодня имеет большую актуальность.
Повысить качество очистки сточных вод, которые затем планируется применять для питья и в хозяйственных целях, можно с помощью применения специальных способов их очистки. Для этого сооружаются комплексы очистных сооружений, которые затем объединяются в водоочистные станции.

Но следует уделять внимание проблеме очистки не только той воды, которая затем будет употребляться в пищу. Любые сточные воды, пройдя определенные этапы очистки, сбрасываются в водоемы или на рельеф. И если они содержат вредоносные примеси, и их концентрация выше допустимых значений, то наносится серьезный удар по состоянию окружающей среды. Поэтому все мероприятия по охране водоемов, рек и природы в целом начинаются с повышения качества очистки стоков. Специальные сооружения, которые служат для очистки стоков, помимо своей основной функции также позволяют добыть из стоков полезные примеси, которые можно использовать в дальнейшем, возможно даже на других производствах.
Степень очистки стоков регулируется законодательными актами, а именно «Правилами охраны поверхностных вод от загрязнения сточными водами» и «Основами водного законодательства РФ».
Все комплексы очистных сооружений можно разделить на водопроводные и канализационные. Каждый вид можно разделить еще на подвиды, отличающиеся между собой особенностями строения, составом, а также технологическими процессами очистки.

Водопроводные очистные сооружения

Используемые методы очистки воды, а соответственно и состав самих сооружений очистки, определяются качеством исходной воды и требованиям к воде, которую нужно получить на выходе.
Технология очистки включает процессы осветления, обесцвечивания и обеззараживания. Происходит это с помощью процессов отстаивания, коагуляции, фильтрации и обработки хлором. В том случае, если изначально вода не очень загрязнена, то некоторые технологические процессы пропускаются.

Наиболее распространенными способами осветления и обесцвечивания стоков на водопроводных очистных установках являются коагуляция, фильтрация и отстаивание. Зачастую отстаивают воду в горизонтальных отстойниках, а фильтруют их с использованием различных загрузок или контактных осветлителей.
Практика строительства водоочистных сооружений в нашей стране показала, что самое широкое применение имеют те устройства, которые спроектированы таким образом, что в роли главных очистных элементов выступают горизонтальные отстойники и быстрые фильтры.

Единые требования к очищенной питьевой воде предопределяет практически идентичный состав и структуру сооружений. Приведем пример. Во все без исключения водоочистные станции (независимо от их мощности, производительности, типа и других особенностей) входят такие составляющие:
- реагентные устройства со смесителем;
- камеры хлопьеобразования;
- горизонтальные (реже вертикальные) отстойные камеры и осветлители;
- ;
- емкости для очищенной воды;
- ;
- подсобно-вспомогательные, административные и бытовые объекты.

Канализационные очистные сооружения

Очистные канализационные сооружения имеют сложную инженерную структуру, как и водопроводные системы очистки. На таких сооружениях стоки проходят этапы механической, биохимической (ее еще называют ) и химической очистки.

Механическая очистка стоков позволяет отделить взвешенные вещества, а также грубые примеси с помощью процеживания, фильтрования и отстаивания. На некоторых объектах очистки механическая очистка является завершающей стадией процесса. Но зачастую она является лишь подготовительной стадией для биохимической очистки.

Механическая составляющая комплекса по очистке стоков состоит из таких элементов:
- решетки, задерживающие крупные примеси минерального и органического происхождения;
- песколовки, которые позволяют отделить тяжелые механические примеси (как правило, это песок);
- отстойники для отделения взвешенных частиц (зачастую органического происхождения);
- хлораторные устройства с контактными емкостями, где осветленная сточная вода обеззараживается под воздействием хлора.
Такие стоки после дезинфекции могут быть сброшены в водоем.

В отличие от механической очистки, при химическом способе очистки перед отстойниками устанавливают смесители и реагентные установки. Таким образом сточные воды после того как пройдут решетку и песколовку поступают в смеситель, где к ним добавляется специальный реагент для коагулирования. А затем смесь отправляется в отстойник для осветления. После отстойника вода выпускается или в водоем, или на последующий этап очистки, где происходит дополнительное осветление, а затем они выпускаются в водоем.

Биохимический метод очистки стоков зачастую производится на таких сооружениях: поля фильтрации, или в биофильтрах.
На полях фильтрации стоки после прохождения этапа очистки в решетках и песколовках, поступают в отстойники для осветления и дегельминтизации. Затем они следуют на поля орошения или фильтрации, и после этого они сбрасываются в водоем.
При очистке в биофильтрах стоки проходят этапы механической очистки, а затем подвергаются принудительной аэрации. Дальше стоки, содержащие кислород, поступают в сооружения биофильтров, а после него направляются во вторичный отстойник, где осаждаются выносимые из биофильтра взвешенные вещества и избыток . После этого очищенные стоки проходят дезинфекцию, и сбрасываются в водоем.
Очистка стоков в аэротенках проходит такие этапы: решетки, песколовки, принудительная аэрация, отстаивание. Затем предварительно очищенные стоки поступают в аэротенк, а затем во вторичные отстойники. Заканчивается этот способ очистки так же, как и предыдущий – процедурой дезинфекции, после чего стоки могут быть сброшены в водоем.

Показатели качества воды.

Основным источником централизованного хозяйственно-питьевого водоснабжения в большинстве регионов Российской Федерации являются поверхностные воды рек, водохранилищ и озер. Количество загрязнений , попадающее в поверхностные источники водоснабжения разнообразно и зависит от профиля и объема промышленных и сельскохозяйственных предприятий, расположенных в районе водосбора.

При одноступенчатой схеме очистки воды ее осветление осуществляется на фильтрах или в контактных осветлителях. При очистке маломутных цветных вод применяется одноступенчатая схема.

Рассмотрим более подробно сущность основных процессов водоочистки. Коагулирование примесей называют процесс укрупнения мельчайших коллоидных частиц, происходящих вследствие их взаимного слипания под действием молекулярного притяжения.

Коллоидные частицы , содержащиеся в воде, имеют отрицательные заряды и находятся во взаимном отталкивании, поэтому не оседают. Коагулянт добавленный образует положительно заряженные ионы, что способствует взаимному притяжению противоположно заряженных коллоидов и приводит к образованию укрупненных частиц (хлопьев) в камерах хлопьеобразования.

В качестве коагулянтов применяют сернокислый алюминий, сернокислое закисное железо, полиоксихлорид алюминия.

Процесс коагуляции описывается следующими химическими реакциями

Al 2 (SO 4) 3 →2Al 3+ +3SO 4 2- .

После введения в воду коагулянта катионы алюминия взаимодействуют с ней

Al 3+ +3H 2 O=Al(OH) 3 ↓+3H + .

Катионы водорода связываются присутствующими в воде бикарбонатами:

H + +HCO 3 - →CO 2 +H 2 O.

2H + +CO 3 -2 →H 2 O+CO 2.

Процесс осветления можно интенсифицировать при помощи высокомолекулярных флокулянтов (праестола, ВПК − 402), которые вводятся в воду после смесителя.

Тщательное перемешивание очищаемой воды с реагентами осуществляется в смесителях различных конструкций. Смешение реагентов с водой должно быть быстрым и осуществляться в течение 1 - 2 мин. Применяются следующие виды смесителей: дырчатые (рис. 1.8.2), перегородчатые (рис. 1.8.3) и вертикальные (вихревые) смесители.

Смеситель дырчатого типа применяется на станциях обработки воды производительностью до 1000 м 3 /ч. Он выполняется в виде железобетонного лотка с вертикальными перегородками, установленными перпендикулярно движению воды и снабженными отверстиями, расположенными в несколько рядов.

Рис. 1.8.2. Дырчатый смеситель

Перегородчатый смеситель применяется на водоочистных станциях производительностью не более 500 - 600 м3/ч. Смеситель состоит из лотка с тремя поперечными вертикальными перегородками. В первой и третьей перегородках устраивают проходы для воды, размещенные в центральной части перегородок. В средней перегородке предусмотрены два боковых прохода для воды, примыкающих к стенкам лотка. Благодаря такой конструкции смесителя возникает турбулентность движущегося потока воды, обеспечивающая полное смешение реагента с водой.

Рис. 1.8.3. Перегородчатый смеситель

На станциях, где вода обрабатывается известковым молоком, применение дырчатых и перегородчатых смесителей не рекомендуется, так как скорость движения воды в этих смесителях не обеспечивает поддержания частиц извести во взвешенном состоянии, что приводит к их осаждению перед перегородками.

На водоочистных станциях наибольшее применение нашли вертикальные смесители (рис. 1.8.4). Смеситель этого типа может быть квадратного или круглого сечения в плане, с пирамидальной или конической нижней частью.

Рис. 1.8.4. Вертикальный (вихревой) смеситель:

1 − подача исходной воды; 2 − отвод воды из смесителя

В перегородчатых камерах хлопьеобразования устраивают ряд перегородок, которые заставляют воду менять направление своего движения либо в вертикальной, либо в горизонтальной плоскости, что и обеспечивает необходимое перемешивание воды.

Для перемешивания воды и обеспечения более полной агломерации мелких хлопьев коагулянта в крупные служат камеры хлопьеобразования. Их установка необходима перед горизонтальными и вертикальными отстойниками. При горизонтальных отстойниках следует устраивать следующие типы камер хлопьеобразования: перегородчатые, вихревые, встроенные со слоем взвешенного осадка и лопастные; при вертикальных отстойниках - водоворотные.

Удаление взвешенных веществ из воды (осветление) осуществляется путем отстаивания ее в отстойниках. По направлению движения воды отстойники бывают горизонтальные, радиальные и вертикальные.

Горизонтальный отстойник (рис. 1.8.5) представляет собой прямоугольный в плане железобетонный резервуар. В нижней его части имеется объем для накопления осадка, который удаляется по каналу. Для более эффективного удаления осадка дно отстойника выполняют с уклоном. Обрабатываемая вода поступает через распределительный лоток (или затопленный водослив). Пройдя через отстойник, вода собирается лотком или перфорированной (дырчатой) трубой. В последнее время применяют отстойники с рассредоточенным сбором осветленной воды, устраивая специальные желоба или перфорированные трубы в верхней их части, что позволяет увеличить производительность отстойников. Горизонтальные отстойники применяют на очистных станциях производительностью более 30 000 м 3 /сут.

Рис.1.8.5. Горизонтальный отстойник:

1 − подача исходной воды; 2 − отвод очищенной воды; 3 − отвод осадка; 4 − распределительные карманы; 5 − распределительные решетки; 6 − зона накопления осадка; 7 − зона отстаивания

Разновидностью горизонтальных отстойников являются радиальные отстойники, имеющие механизм для сгребания осадка в приямок, располагаемый в центре сооружения. Из приямка осадок откачивается насосами. Конструкция радиальных отстойников сложнее, чем горизонтальных. Применяют их для осветления вод с большим содержанием взвешенных веществ (более 2 г/л) и в системах оборотного водоснабжения.

Вертикальные отстойники (рис. 1.8.6) круглой или квадратной формы в плане имеют коническое или пирамидальное днище для накопления осадка. Эти отстойники применяют при условии предварительного коагулирования воды. Камера хлопьеобразования, в основном водоворотная, располагается в центре сооружения. Осветление воды происходит при восходящем ее движении. Осветленная вода собирается кольцевыми и радиальными лотками. Осадок из вертикальных отстойников выпускают под гидростатическим напором воды без выключения сооружения из работы. Вертикальные отстойники применяют в основном при расходах 3000 м 3 /сут.

Рис. 1.8.6. Вертикальный отстойник:

1 − камера хлопьеобразования; 2 − сегнерово колесо с насадками; 3 − гаситель; 4 − подача исходной воды (из смесителя); 5 − сборный желоб вертикального отстойника; 6 − труба для отвода осадка из вертикального отстойника; 7 − отвод воды из отстойника

Осветлители со взвешенным слоем осадка предназначены для предварительного осветления воды перед фильтрованием и только при условии предварительного коагулирования.

Осветлители со взвешенным слоем осадка могут быть разных типов. Одним из наиболее распространенных является осветлитель коридорного типа (рис. 1.8.7), который представляет собой прямоугольный в плане резервуар, разделенный на три секции. Две крайние секции являются рабочими камерами осветлителями, а средняя секция служит осадкоуплотнителем. Осветляемая вода подается у дна осветлителя по дырчатым трубам и равномерно распределяется по площади осветлителя. Затем она проходит через взвешенный слой осадка, осветляется и по дырчатому лотку или трубе, располагаемым на некотором расстоянии над поверхностью взвешенного слоя, отводится на фильтры.

Рис.1.8.7. Коридорный осветлитель со взвешенным осадком с вертикальным осадкоуплотнителем:

1 − коридоры-осветлители; 2 − осадкоуплотнитель; 3 −− подача исходной воды; 4 − сборные карманы для отвода осветленной воды; 5 − отвод осадка из осадкоуплотнителя; 6 − отвод осветленной воды из осадкоуплотнителя; 7 − осадкоприемные окна с козырьками

Для глубокого осветления воды применяют фильтры, которые способны улавливать из нее практически все взвеси. Существуют так же фильтры и для частичной очистки воды. В зависимости от природы и типа фильтрующего материала различают следующие типы фильтров: зернистые (фильтрующий слой − кварцевый песок, антрацит, керамзит, горелые породы, гранодиарит, пенополистирол и др.); сетчатые (фильтрующий слой − сетка с размером ячеек 20 - 60 мкм); тканевые (фильтрующий слой − хлопчатобумажные, льняные, суконные, стеклянные или капроновые ткани); намывные (фильтрующий слой − древесная мука, диатомит, асбестовая крошка и другие материалы, намываемые в виде тонкого слоя на каркас из пористой керамики, металлической сетки или синтетической ткани).

Зернистые фильтры применяют для очистки хозяйственно − питьевой и технической воды от тонкодисперсной взвеси и коллоидов; сетчатые − для задержания грубодисперсных взвешенных и плавающих частичек; тканевые - для очистки маломутных вод на станциях небольшой производительности.

Для очистки воды в коммунальном водоснабжении применяются зернистые фильтры. Важнейшей характеристикой работы фильтров является скорость фильтрования, в зависимости от которой фильтры подразделяют на медленные (0,1 − 0,2), скорые (5,5 − 12) и сверхскоростные (25 − 100м/ч). Медленные фильтры применяют при небольших расходах воды без предварительного коагулирования; сверхскоростные − при подготовке воды для промышленных целей, для частичного осветления воды.

Наибольшее распространение получили скорые фильтры, на которых осветляется предварительно коагулированная вода (рис. 1.8.8).

Вода, поступающая на скорые фильтры после отстойника или осветлителя, не должна содержать взвешенных веществ более 12 - 25 мг/л, а после фильтрования мутность воды не должна превышать 1,5 мг/л

Рис. 1.8.8. Схема скорого фильтра:

1 − корпус; 2 − фильтрующая загрузка; 3 − отвод фильтрата; 4 − подача исходной воды; 5 − отвод исходной воды; 6 − нижняя дренажная система; 7 − поддерживающий слой; 8 − желоб для сбора промывной воды; 9 − подача воды на промывку

Контактные осветлители по устройству аналогичны скорым фильтрам и являются их разновидностью. Осветление воды, основанное на явлении контактной коагуляции, происходит при движении ее снизу вверх. Коагулянт вводят в обрабатываемую воду непосредственно перед ее фильтрованием через песчаную загрузку. За короткое время до начала фильтрования образуются лишь мельчайшие хлопья взвесей. Дальнейший процесс коагуляции происходит на зернах загрузки, к которым прилипают ранее образовавшиеся мельчайшие хлопья. Этот процесс, называемый контактной коагуляцией, происходит быстрее, чем обычная коагуляция в объеме, и требует меньшего количества коагулянта. Контактные осветлители промывают путем подачи воды снизу через распределительную систему (как в обычных скорых фильтрах).

Обеззараживание воды. В современных очистных сооружениях обеззараживание воды производится во всех случаях, когда источник водоснабжения ненадежен с санитарной точки зрения. Обеззараживание может быть осуществлено

  • хлорированием,
  • озонированием
  • бактерицидным облучением.

Хлорирование воды.

Способ хлорирования является наиболее распространенным способом обеззараживания воды. Обычно для хлорирования используют жидкий или газообразный хлор. Хлор обладает высокой дезинфицирующей способностью, относительно стоек и длительное время сохраняет активность. Он легко дозируется и контролируется. Хлор действует на органические вещества, окисляя их, и на бактерии, которые погибают в результате окислений веществ, входящих в состав протоплазмы клеток. Недостатком обеззараживания воды хлором является образование токсичных летучих галогенорганических соединений.

Одним из перспективных способов хлорирования воды является использование гипохлорита натрия (NaClO), получаемого электролизом 2 − 4 % раствора поваренной соли.

Диоксид хлора (ClO 2) позволяет уменьшить возможность образования побочных хлорорганических соединений. Бактерицидность диоксида хлора более высокая чем хлора. Особенно эффективен диоксид хлора при обеззараживании воды с высоким содержанием органических веществ и аммонийных солей.

Остаточная концентрация хлора в питьевой воде не должна превышать 0,3 − 0,5 мг/л

Взаимодействие хлора с водой осуществляется в контактных резервуарах. Продолжительность контакта хлора с водой до поступления ее к потребителям должна быть не менее 0,5 ч.

Бактерицидное облучение .

Бактерицидное свойство ультрафиолетовых лучей (УФ) обусловлено действием на клеточный обмен и особенно на ферментные системы бактериальной клетки, кроме того, под действием УФ − излучения происходят фотохимические реакции в структуре молекул ДНК и РНК, приводящими к их необратимым повреждениям. УФ − лучи уничтожают не только вегетативные, но и споровые бактерии, тогда как хлор действует только на вегетативные. К достоинствам УФ − излучения следует отнести отсутствие какого − либо воздействия на химический состав воды.

Для обеззараживания воды таким способом ее пропускают через установку, состоящую из ряда специальных камер, внутри которых размещены ртутно − кварцевые лампы, заключенные в кварцевые кожухи. Ртутно − кварцевые лампы выделяют ультрафиолетовое излучение. Производительность такой установки в зависимости от числа камер составляет 30…150 м 3 /ч.

Эксплуатационные расходы на обеззараживание воды облучением и хлорированием примерно одинаковы.

Однако следует отметить, что при бактерицидном облучении воды затруднен контроль эффекта обеззараживания, тогда как при хлорировании этот контроль осуществляется достаточно просто по наличию остаточного хлора в воде. Помимо этого данный способ невозможно использовать для обеззараживания воды с повышенной мутностью и цветностью.

Озонирование воды.

Озон применяется с целью глубокой очистки воды и окисления специфических органических загрязнений антропогенного происхождения (фенолов, нефтепродуктов, СПАВ, аминов, и др.). Озон позволяет улучшить протекание процессов коагуляции, сократить дозу хлора и коагулянта, уменьшить концентрацию ЛГС, повысить качество питьевой воды по микробиологическими и органическим показателям.

Озон наиболее целесообразно применять совместно с сорбционной очисткой на активных углях. Без озона во многих случаях невозможно получить воду, соответствующую СанПиН. В качестве основных продуктов реакции озона с органическими веществами называют такие соединения, как формальдегид и ацетальдегид, содержание которых нормируется в питьевой воде на уровне 0,05 и 0,25 мг/л соответственно.

Озонирование основано на свойстве озона разлагаться в воде с образованием атомарного кислорода, разрушающего ферментные системы микробных клеток и окисляющего некоторые соединения. Количество озона, необходимое для обеззараживания питьевой воды, зависит от степени загрязнения воды и составляет не более 0,3 − 0,5 мг/л. Озон токсичен. Предельно допустимое содержание этого газа в воздухе производственных помещений 0,1 г/м 3 .

Обеззараживание воды озонированием по санитарным и техническим нормам является наилучшим, но сравнительно дорогим. Установка для озонирования воды представляет собой сложный и дорогой комплекс механизмов и оборудования. Существенным недостатком озонаторной установки является значительное потребление электроэнергии для получения из воздуха очищенного озона и подачи его в обрабатываемую воду.

Озон , являясь сильнейшим окислителем, может применяться не только для обеззараживания воды, но и для ее обесцвечивания, а также для устранения привкусов и запахов.

Доза озона, необходимая для обеззараживания чистой воды, не превышает 1 мг/л, для окисления органических веществ при обесцвечивании воды - 4 мг/л.

Продолжительность контакта обеззараживаемой воды с озоном составляет примерно 5 мин.

Скопируйте код и вставьте в свой блог:


alex-avr

Рублевская станция водоподготовки

Водоснабжение Москвы обеспечивают четыре крупнейших станции водоподготовки: Северная, Восточная, Западная и Рублевская. Первые две в качестве источника воды используют волжскую воду, подаваемую по каналу имени Москвы. Последние две берут воду из Москвы-реки. Производительности этих четырех станций отличаются не очень сильно. Кроме Москвы они также обеспечивают водой ряд подмосковных городов. Сегодня речь пойдет про Рублевскую станцию водоподготовки - это старейшая в Москве станция по очистке воды, запущенная в 1903 году. В настоящее время станция обладает производительностью 1680 тысяч м3 в сутки и питает водой западные и северо-западные части города.








Водоснабжение Москвы обеспечивают четыре крупнейших станции водоподготовки: Северная, Восточная, Западная и Рублевская. Первые две в качестве источника воды используют волжскую воду, подаваемую по каналу имени Москвы. Последние две берут воду из Москвы-реки. Производительности этих четырех станций отличаются не очень сильно. Кроме Москвы они также обеспечивают водой ряд подмосковных городов. Сегодня речь пойдет про Рублевскую станцию водоподготовки - это старейшая в Москве станция по очистке воды, запущенная в 1903 году. В настоящее время станция обладает производительностью 1680 тысяч м3 в сутки и питает водой западные и северо-западные части города.

Весь магистральный водопровод и канализация в Москве находятся в ведении Мосводоканала - одной из крупнейших организаций в городе. Для представления масштабов: по энергопотреблению Мосводоканал уступает лишь двум другим - РЖД и метро. Все станции водоподготовки и очистки принадлежат им. Давайте пройдемся по Рублевской станции водоподготовки.

Рублевская станция водоподготовки находится недалеко от Москвы, в паре километров от МКАДа, на северо-западе. Расположена она прямо на берегу Москвы-реки, откуда и забирает воду для очистки.

Чуть выше по течению Москва-реки располагается Рублевская плотина.

Плотина была построена в начале 30х годов. В настоящее время используется для регулирования уровня Москвы-реки, для того, чтобы мог функционировать водозабор Западной станции водоподготовки, который находится на несколько километров выше по течению.

Поднимемся наверх:

На плотине используется вальцовая схема - затвор двигается по наклонным направляющим в нишах с помощью цепей. Приводы механизма находятся сверху в будке.

Выше по течению находятся водозаборные каналы, вода с которых, как я понял, поступает на Черепковские очистные сооружения, находящиеся неподалеку от самой станции и являющиеся ее частью.

Иногда, для забора проб воды из реки Мосводоканал использует катер на воздушной подушке. Пробы забираются ежедневно по несколько раз в нескольких точках. Нужны они для определения состава воды и подбора параметров технологических процессов при ее очистке. В зависимости от погоды, времени года и прочих факторов состав воды сильно меняется и за этим постоянно следят.

Кроме того пробы воды из водопровода отбирают на выходе из станции и во множестве точек по всему городу, как сами Мосводоканаловцы, так и независимые организации.

Также имеется ГЭС небольшой мощности, включающая три агрегата.

В настоящее время она остановлена и выведена из эксплуатации. Заменять оборудование на новое - экономически не целесообразно.

Пора выдвигаться на саму станцию водоподготовки! Первое куда пойдем - насосная станция первого подъема. Она закачивает воду из Москвы-реки и поднимает ее вверх, на уровень самой станции, которая находится на правом, высоком, берегу реки. Заходим в здание, поначалу обстановка вполне обычная - светлые коридоры, информационные стенды. Неожиданно встречается квадратный проем в полу, под которым огромное пустое пространство!

Впрочем к нему мы еще вернемся, а пока пойдем дальше. Огромный зал с квадратными бассейнами, насколько я понял это что-то типа приемных камер, в которые поступает вода из реки. Сама река находится справа, за окнами. А насосы закачивающие воду - слева внизу за стенкой.

Снаружи здание выглядит так:

Фото с сайта Мосводоканала.

Тут же установлено оборудование, похоже это автоматическая станция анализа параметров воды.

Все сооружения на станции имеют весьма причудливую конфигурацию - много уровней, всевозможные лесенки, спуски, баки, и трубы-трубы-трубы.

Какой-то насос.

Спускаемся вниз, примерно на 16 метров и попадаем в машинный зал. Тут установлено 11 (три запасных) высоковольтных мотора, приводящих в движение центробежные насосы уровнем ниже.

Один из запасных моторов:

Для любителей шильдиков:)

Вода снизу закачивается в огромные трубы, которые вертикально проходят через зал.

Все электротехническое оборудование на станции выглядит очень аккуратно и современно.

Красавцы:)

Заглянем вниз и увидим улитку! Каждый такой насос имеет производительность 10 000 м 3 в час. Для примера, он мог бы полностью, от пола до потолка заполнить водой обычную трехкомнатную квартиру всего за минуту.

Спустимся на уровень ниже. Тут гораздо прохладнее. Этот уровень находится ниже уровня Москва-реки.

Не очищенная вода из реки по трубам поступает в блок очистных сооружений:

Таких блоков на станции несколько. Но перед тем как пойти туда, сначала посетим другое здание, называемое "Цех производства озона". Озон, он же O 3 используется для обеззараживания воды и удаления из нее вредных примесей, с помощью метода озоносорбции. Данная технология вводится Мосводоканалом в последние годы.

Для получения озона используется следующий техпроцесс: воздух с помощью компрессоров(справа на фото) нагнетается под давлением и попадает в охладители(слева на фото).

В охладителе воздух охлаждается в два этапа с использованием воды.

Затем подается на осушители.

Осушитель представляет из себя две емкости содержащие смесь поглощающую влагу. В то время как одна емкость используется, вторая восстанавливает свои свойства.

С обратной стороны:

Оборудование управляется с помощью графических сенсорных экранов.

Далее подготовленный холодный и сухой воздух поступает в генераторы озона. Генератор озона представляет собой большую бочку, внутри которой расположено множество трубок-электродов, на которые подается большое напряжение.

Так выглядит одна трубка(в каждом генераторе из десятки):

Ершик внутри трубки:)

Через стеклянное окошко можно посмотреть на весьма красивый процесс получения озона:

Пришло время осмотреть блок очистных сооружений. Заходим внутрь и долго поднимаемся по лестнице, в результате оказываемся на мостике в огромном зале.

Тут самое время рассказать про технологию очистки воды. Сразу скажу, что я не специалист и процесс понял лишь в общих чертах без особых подробностей.

После того как вода поднимается из реки, она попадает в смеситель - конструкция из нескольких последовательных бассейнов. Там в нее поочередно добавляют разные вещества. В первую очередь - порошковый активированный уголь (ПАУ). Затем в воду добавляют коагулянт (полиоксихлорид алюминия) – который заставляет мелкие частицы собираться в более крупные комки. Затем вводится специальное вещество называемое флокулянт - в результате чего примеси превращаются в хлопья. Затем вода попадает в отстойники, где все примеси осаждаются, после чего проходит через песчаные и угольные фильтры. В последнее время добавился и еще один этап - озоносорбция, но об этом ниже.

Все основные реагенты применяющиеся на станции (кроме жидкого хлора) в один ряд:

На фотографии насколько я понял - зал смесителя, найдите людей в кадре:)

Всевозможные трубы, резервуары и мостики. В отличие от канализационных очистных сооружений тут все гораздо запутаннее и не так интуитивно понятно, кроме того, если там большая часть процессов происходит на улице, то подготовка воды происходит полностью в помещениях.

Этот зал является лишь малой частью огромного здания. Частично продолжение можно разглядеть в проемах внизу, туда отправимся позже.

Слева стоят какие-то насосы, справа огромные баки с углем.

Там же очередная стойка с оборудованием измеряющим какие-то характеристики воды.

Озон является крайне опасным газом (первая, высшая категория опасности). Сильнейший окислитель, вдыхание которого может привести к летальному исходу. Поэтому процесс озонирования происходит в специальных закрытых бассейнах.

Всевозможная измерительная аппаратура и трубопроводы. По бокам - иллюминаторы, через которые можно посмотреть на процесс, сверху - прожекторы, которые также светят через стекла.

Внутри водичка очень активно бурлит.

Отработанный озон поступает к деструктору озона представляющим собой нагреватель и катализаторы, там озон полностью разлагается.

Переходим к фильтрам. На табло показывается скорость промывки(продувки?) фильтров. Фильтры со временем загрязняются и их очищают.

Фильтры представляют собой длинные резервуары наполненные гранулированным активированным углем(ГАУ) и мелким песком по специальной схеме.

Br />
Фильтры находятся в отдельном изолированном от внешнего мира пространстве, за стеклом.

Можно оценить масштаб блока. Фотография сделана посередине, если взглянуть назад, то можно увидеть то же самое.

В результате всех этапов очистки вода становится пригодной для питья и удовлетворяет всем нормам. Однако, запускать такую воду в город нельзя. Дело в том, что протяженность водопроводных сетей Москвы - тысячи километров. Есть участки с плохой циркуляцией, закрытые ответвления и т.п. Как результат - в воде могут начать размножаться микроорганизмы. Чтобы это избежать воду хлорируют. Раньше это делали путем добавления жидкого хлора. Однако он является крайне опасным реагентом (в первую очередь с точки зрения производства, перевозки и хранения), поэтому сейчас Мосводоканал активно переходит на гипохлорит натрия, который гораздо менее опасен. Для его хранения пару лет назад был построен специальный склад (привет HALF-LIFE).

Опять же все автоматизировано.

И компьютеризировано.

В конце концов, вода попадает в огромные подземные резервуары на территории станции. Эти резервуары наполняются и опустошаются в течение суток. Дело в том, что станция работает с более менее постоянной производительностью, в то время как потребление в течение дня очень сильно меняется - утром и вечером оно крайне высокое, ночью очень низкое. Резервуары служат некоторым аккумулятором воды - ночью они наполняются чистой водой, а днем она забирается из них.

Управляется вся станция из центральной диспетчерской. 24 часа в сутки дежурят два человека. У каждого рабочее место с тремя мониторами. Если я правильно запомнил - один диспетчер следит за процессом очистки воды, второй - за всем остальным.

На экранах отображается огромное количество всевозможных параметров и графиков. Наверняка эти данные берутся в том числе с тех приборов, которые были выше на фотографиях.

Крайне важная и ответственная работа! Кстати говоря, на станции практически не было замечено работников. Весь процесс очень сильно автоматизирован.

В заключение - немного сюрра в здании диспетчерской.

Конструкция декоративного характера.

Бонус! Одно из старых зданий, оставшихся со времен самой первой станции. Когда-то она вся была кирпичной и все сооружения выглядели примерно так, однако сейчас все полностью перестроено, сохранилось лишь несколько строений. Кстати, вода в те времена подавалась в город с помощью паровых машин! Чуть подробнее можно почитать (и посмотреть старые фото) в моем